期刊文献+

响应面法优化生产1,3-丙二醇的克雷伯氏菌突变体发酵条件(英文) 被引量:3

Optimization of Fermentation Conditions for 1,3-Propanediol Production by Klebsiella pneumoniae Mutant Using Response Surface Methodology
下载PDF
导出
摘要 为了提高克雷伯氏菌突变体Kp-M2生产1,3-丙二醇的能力,通过响应面法优化该菌株的发酵条件。通过Plackett-Burman方法筛选出影响1,3-丙二醇生物转化的重要发酵条件是初始甘油浓度、初始pH值和接种时间。在经过最陡爬坡实验确定中心点后,上述3个重要参数经Box-Behnken设计进行优化实验。实验结果表明,当甘油质量浓度为57 g/L,pH值为7.3,接种时间为10 h时,1,3-丙二醇的理论最大值为21.6 g/L。摇瓶验证实验1,3-丙二醇质量浓度为20.7 g/L,比未优化条件下的提高30%。在上述优化条件下的间歇发酵和批式流加发酵结果表明,1,3-丙二醇质量浓度分别为29.5和92.0 g/L,均高于对照的19.9和76.7 g/L。上述结果表明,响应面法可以有效地用于优化发酵条件,从而提高1,3-丙二醇产率。 Response surface methodology (RSM) was employed to optimize fermentation parameters for high-level production of 1,3-propanediol ( 1,3-PD ) by the Klebsiella pneumoniae mutant Kp-M2. Based on the Plackett-Burman design, original concentration of glycerol, original pH and seed age were selected as the most critical parameters. The center points of these three parameters were determined using the steepest accent (descent), and all three parameters were then optimized by the Box-Behnken design. A maximum 1,3-PD concentration of 21.6 g/L was predicted by the optimized glycerol concentration (57 g/L), pH (7.3) and seed age (10 h). Using these three optimized parameters, 20.7 g/L 1,3-PD was obtained from flask fermentation, which represented a 30% increase over that obtained under non-optimized conditions. Under batch and fed-batch fermentations using the same optimized parameters, the concentration of 1, 3-PD increased to 29.5 and 92.0 g/L, respectively, compared to 19.9 and 76.7 g/L previously obtained for non-optimized fermentation conditions. This showed that RSM could be effectively used to enhance the production of 1,3-PD via fermentation.
出处 《林产化学与工业》 EI CAS CSCD 北大核心 2013年第2期10-18,共9页 Chemistry and Industry of Forest Products
基金 国家自然科学基金(21246012) 辽宁省自然科学基金(201205531) 辽宁省教育厅科学技术研究一般项目(无编号)
关键词 1 3-丙二醇 克雷伯氏菌突变体 发酵 统计优化 响应面法 1,3-propanediol Klebsiella pneumoniae mutant fermentation statistical optimization response surface methodology
  • 相关文献

参考文献29

  • 1CELINSKA E. Debottlenecking the 1,3-propanediol pathway by metabolic engineering [ J ]. Biotechnology Advances, 2010,28 ( 4 ) : 519 -530.
  • 2XIU Z L, ZENG A P. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol [ J ] Applied Microbiology and Biotechnology ,2008,78 (6) :917-926.
  • 3BIEBL H, MENZEL K, ZENG A P, et al. Microbial production of 1,3-propanediol [ J ]. Applied Microbiology and Biotechnology, 1999,52 ( 3 ) 289-297.
  • 4GONZALEZ-PAJUELO M,MEYNIAL-SALLES I,MENDES F,et al. Metabolic engineering of Clostridium acetobutylicum for the industrial pro- duction of 1,3-propanediol from glycerol [ J ]. Metabolic Engineering,2005,7 ( 5/6 ) :329-336.
  • 5BOENIGK R, BOWIEN S, GOTTSCHA LK G. Fermentation of glycerol to 1,3-propanediol in continuous of Citrobacterfreundii[ J ]. Applied Mi- crobiology and Biotechnology, 1992,38 (4) :453-457.
  • 6STEVENS M J A, VOLLENWE1DER S, MEILE L, et al. 1,3-Propanediol dehydrogenases in Bictobacillus reuteri, hnpact on central metabolism and 3-hydroxypropioaaldehyde production[ J]. Microbial Cell Factories ,2011,10( 1 ) :61-69.
  • 7CHEN X,ZHANG D J, QI w T, ct al. Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic condi- tions [ J ]. Applied Microbiology and Biotechnology ,2003,63 (2) : 143-146.
  • 8DONG X Y, XIU Z L, LI S, et al. Dielectric barrier discharge plasma as a novel approach for improving 1,3-propanediol prodnction in Klebsiella pneumoniae[ J]. Biotechnology Letters,2010,32(9 ) : 1245-1250.
  • 9ANNADURAL G. Design of optimum response surface experiments ibr adsorption of direct dye on chitosan[ J ]. Bioproeess Engineering,2000, 23 (5) :451-455.
  • 10LIU L,DONG Y S,QI S S,et al. Biutransformation of steroidal sapoains in Dioscorea zingiberensis D. H. Wright to diosgenin by Trichoderma harzlanum[ J ]. Applied Microbiolog) and Biotechnology ,2010,85 ( 5 ) :933-940.

二级参考文献1

共引文献62

同被引文献47

  • 1贾薇,郑志永,刘汝冰,张劲松,詹晓北.一种新型微生物多糖流变学初探[J].食品科学,2009,30(1):135-138. 被引量:17
  • 2程可可,凌宏志,张丽莉,孙燕,刘德华.葡萄糖作辅助碳源对Klebsiella pneumoniae发酵甘油生产1,3-丙二醇的影响[J].过程工程学报,2004,4(6):561-566. 被引量:3
  • 3刘洪灿,任永娥,陈吉棣,淡家林.齐整小核菌胞外多糖的研究[J].微生物学通报,1993,20(3):147-149. 被引量:7
  • 4宁书年,张桂.生物多糖类物质对人体的作用[J].食品科学,2005,26(9):613-614. 被引量:25
  • 5冯看卡,吕志果,李强.1,3-丙二醇制备工艺技术研究进展[J].合成纤维工业,2007,30(4):46-49. 被引量:13
  • 6Steinbiichel A, Liitke-Eversloh T. Metabolic engineeringand pathway construction for biotechnological productionof relevant polyhydroxyalkanoates in microorganisms[J].Biochemical Engineering Journal, 2003, 16(2): 81-96.
  • 7Chen GQ. A microbial polyhydroxyalkanoates (PHA)based bio- and materials industry [J]. Chemical SocietyReviews, 2009, 38(8): 2434-2446.
  • 8Green PR, Kemper J, Schechtman L, et al. Formation ofshort chain length/medium chain lengthpolyhydroxyalkanoate copolymers by fatty acidp-oxidation inhibited Ralstonia eutropha[J].Biomacromolecules, 2002, 3(1): 208-213.
  • 9Yamashita M, Takemoto Y, Ihara E, et al.Organolanthanide-initiated living polymerizations ofe-caprolactone, 8-valerolactone, and |3-propiolactone[J].Macromolecules, 1996, 29(5): 1798-1806.
  • 10Valentin HE, Mitsky TA, Mahadeo DA, et al. Applicationof a propionyl coenzyme A synthetase for poly(3-hydroxypropionate-co-3 -hydroxybutyrate) accumulationin recombinant Escherichia coli[J], Applied andEnvironmental Microbiology, 2000, 66(12): 5253-5258.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部