期刊文献+

基于FFTW库分步傅里叶变换算法并行方案研究 被引量:3

Study of FFTW-based SSFT Parallel Schemes
下载PDF
导出
摘要 介绍了求解抛物型波动方程的分步傅里叶变换(split step Fouriertransform,SSFT)算法计算过程,分析了算法的并行性,并基于西方快速傅里叶变换(fastest Fourier transform in the West,FFTW)函数库研究了2种分步傅里叶变换算法并行方案。所做测试结果表明,文中所提方案尤其是分布式模式方案,对于实现波动方程的快速求解是有效的,且所做工作对于以波动方程为基础的电波传播、电磁环境数据生成等问题的研究具有一定的指导意义。 This paper introduces the split step Fourier transform (SSFT) method briefly, which is used to solve the parabolic wave equation. Then it analyzes the parallel feasibility of the algorithm. Based on the fastest Fourier transform in the West (FFTW), two parallel numerical schemes are pro- posed in this paper. All the tests show that these proposed plans are efficient for solving wave equa- tions more quickly, especially the distributed-mode. The work done in this paper has a significant val- ue to the radio wave propagation and electromagnetic environment data generation problems that are on base of wave equations.
出处 《装备学院学报》 2013年第2期97-99,共3页 Journal of Equipment Academy
关键词 抛物方程 分步傅里叶变换 并行方案 西方快速傅里叶变换 parabolic equation split step Fourier transform (SSFT) parallel schemes fastestFourier transform in the West (FFTW)
  • 相关文献

参考文献5

  • 1HARDIN R H, TAPPERT F D. Applications of the split- step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations [J]. SIAM Review Chronicle, 1973,15:423.
  • 2FRIGO M,JOHNSON S. FFTW: An adaptive software ar- chitecture for the FFT[C]//IEEE. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Seattle,WA,USA: IEEE, 1998 : 1381-1384.
  • 3FRIGO M. FFTW home page[-EB/OL]. [2010-10-20]. ht- tp://www, fftw. org.
  • 4LEVY M F. Parabolic equation wave propagation[M]. London: methods for electromagnetic London IEE Press, 2000 : 21- 22.
  • 5THIEM K B. A 3D parabolic equation (PE) based technique for predicting propagation path loss in an urban area [D]. California Naval Postgraduate School, 2001 : 6-9.

同被引文献7

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部