摘要
为了得到一组局部最优的特征组 ,提出一种结合分散度和顺序前进法 (SFS)的特征选择方法 .实验结果表明小波矩不变量比 Zernike矩不变量有更好的识别效果 ,尤其对于形体相似的物体 。
To get a locally optimum feature set, a feature selection method was presented, which combines divergence with Sequential Forward Selection (SFS). Experimental results prove that wavelet moment invariants are superior to Zernike’s moment invarinats for pattern recognition, especially for classifying seemingly similar objects with subtle difference.
出处
《红外与毫米波学报》
SCIE
EI
CAS
CSCD
北大核心
2000年第3期215-218,共4页
Journal of Infrared and Millimeter Waves
关键词
矩不变量
小波矩不变量
特征选择
SFS
模式识别
moment invariants, wavelet moment invariants, feature selection, divergence, SFS.