摘要
研究具有Holling IV功能性反应和脉冲的周期捕食食饵系统.找到了影响该系统动力学行为的阈值R0.证明了当R0<1时,该系统的食饵灭绝周期解是局部渐近稳定的;当R0>1时,该系统的食饵灭绝周期解变得不稳定且食饵将一致持久.
In this paper, a non-autonomous periodic predator-prey system with Holling IV functional response and impulsive perturbation is considered. The threshold value R0 which determines the dynamical behavior of the model is provided. Furthermore, we prove that the prey-eradication periodic solution is locally asymptotically stable provided R0 〈 1, the prey-eradication periodic solution is unstable and the pest will be uniform persistent when Ro 〉 1.
出处
《纯粹数学与应用数学》
CSCD
2013年第2期208-213,共6页
Pure and Applied Mathematics
基金
福建省教育厅科技项目(JB12252)
关键词
捕食食饵系统
脉冲
HOLLING
IV功能性反应
持续生存
局部渐近稳定
predator-prey system, impulsive perturbation, Holling IV functional response, permanence,locally asymptotically stable