期刊文献+

具有线性脉冲的周期捕食系统的持久性

Permanence in a periodic predator-prey system with linear impulsive perturbations
下载PDF
导出
摘要 研究具有Holling IV功能性反应和脉冲的周期捕食食饵系统.找到了影响该系统动力学行为的阈值R0.证明了当R0<1时,该系统的食饵灭绝周期解是局部渐近稳定的;当R0>1时,该系统的食饵灭绝周期解变得不稳定且食饵将一致持久. In this paper, a non-autonomous periodic predator-prey system with Holling IV functional response and impulsive perturbation is considered. The threshold value R0 which determines the dynamical behavior of the model is provided. Furthermore, we prove that the prey-eradication periodic solution is locally asymptotically stable provided R0 〈 1, the prey-eradication periodic solution is unstable and the pest will be uniform persistent when Ro 〉 1.
出处 《纯粹数学与应用数学》 CSCD 2013年第2期208-213,共6页 Pure and Applied Mathematics
基金 福建省教育厅科技项目(JB12252)
关键词 捕食食饵系统 脉冲 HOLLING IV功能性反应 持续生存 局部渐近稳定 predator-prey system, impulsive perturbation, Holling IV functional response, permanence,locally asymptotically stable
  • 相关文献

参考文献4

二级参考文献19

  • 1陈超,纪昆.基于比率的三种群混合扩散模型的动力学行为[J].纯粹数学与应用数学,2006,22(4):538-548. 被引量:3
  • 2Hwang T W. Global analysis of the predator-prey system with Beddlington-DeAnglis functional response[J]. J. Math. Anal. Appl., 2003,281:395-401.
  • 3Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. J. Animal. Ecol., 1975,44:331-340.
  • 4DeAnglis D L, Goldstein R A, O'Neill R V. A model for tropic interaction[J]. Ecology, 1975,56:881-892.
  • 5Liu Zhihua, Yuan Rong. Stability and bifurcation in a delayed predator-prey system with Beddington- DeAngelis functional response[J] J.Math. Anal.Appl., 2004,296:521-537.
  • 6Zhang Shuwen, Chen Lansun. A study of predator-prey models with the Beddington-DeAnglis functional response and impulsive effect[J]. Chaos, Solitons and Fractals, 2006,27:237-248.
  • 7Yan Jurang, Zhao Aimin. Oscillation and stability of linear impulsive delay differential equations[J]. J. Math. Anal. Appl., 1998,227:943-969.
  • 8Chen Lansun,Chen Jian. Nonlinear Biological Dynamic Systems[M]. Beijing: Chinese Science and Technology Publishing House, 1993.
  • 9Chen Lansun. Mathematical Models and Methods in Ecology[M]. Beijing:Chinese Science and Technology Publishing House, 1988.
  • 10Montes de Oca F, Zeeman M L. Extinction in nonautonomous competitive Lotka-volterra systems[J].Proc. Am. Math. Soc. 1996.124 : 3677 - 3687.

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部