摘要
考虑具有边值条件的P-Laplacian椭圆型方程div(▽up-2▽u)=a(x)uγ,x∈Ω解的存在性,其中:p>1,γ>p-1;Ω是Rn上的有界区域;Ω光滑;a(x)是光滑的非负函数。主要证明了在a(x)∈C(Ω-)和a(x)∈C(Rn)两种情况下椭圆型方程解的存在性。
In this paper, we consider the existence of the solutions for the P-Laplacian elliptic equation div(|u|p-2u)=a(x)u,x∈Ω to a boundary condition, where P〉1,γ〉p-1;Ω,is a bounded domain with a smooth boundary in R~, and a (x) is nonnegative and smooth. Our main pur-pose is to establish the existence of entire solutions for the elliptic equations, in the case a(x)∈C(Ω)and a(x)∈C(R^n).
出处
《重庆理工大学学报(自然科学)》
CAS
2013年第4期138-142,共5页
Journal of Chongqing University of Technology:Natural Science
基金
国家自然科学基金资助项目(11201115)