摘要
在一致凸的对偶Banach空间中,建立了一类集值变分包含问题的存在性定理,讨论了在没有附加连续性的假设下,Mann型迭代序列强收敛于这个问题的解.
An existence theorem for a class of set - valued variational inclusion problems is established in Banach spaces with uniformly convex dual. Furthermore, it is shown that a sequence of a Mann - type iteration algorithm is strongly convergent to the solutions in this problems. No continuousness assumption will be imposed on the multi - valued accretive mapping.
出处
《南昌航空大学学报(自然科学版)》
CAS
2013年第1期85-89,共5页
Journal of Nanchang Hangkong University(Natural Sciences)
基金
国家自然科学基金(11261040/A1107)
南昌航空大学博士启动基金(EA201107261)
关键词
变分包含
m-增生映射
φ-强增生
迭代算法
variational inclusion
m - accretive mappings
Ф - strongly accretive
iterative algorithms