期刊文献+

树在其自同构群下的点轨道集的特征 被引量:2

Features of vertices orbit of tree under its automorphism group
下载PDF
导出
摘要 给定一棵有有限个顶点的无向、简单树,记作τ。把τ的自同构群,记作Autτ。a∈Vτ,定义A a={a i∈Vτ■α∈Autτ,使α(a i)=a},通过A a构造了树τ的子图τa=∪a,b∈Aa a≠bΓa,b,定义所有顶点之间的最大距离称为树τ的直径,记作diam(τ)。设diam(τa)=k≥0,k∈Z+,则■a,b∈A a,∈d(a,b)=k。并且c∈A a,有d(a,c)=k或者d(c,b)=k。 Given a simple undirected tree which has finite vertices, denoted τ as τ. We Denote auto-morphism group of τ as Autτ,for any a belongs to Vτ ,definite Aa = {ai∈Vτ| α∈Autτ,∈α(ai)=a}, we construct subgraph of τ with Aa , denoted τa =∪∨a,b∈Aa a≠b Гa,b,define diam (τ) as the maximum distance between all vertices called tree diameter. Assumed diam (τa)=k≥0,k∈Z^+ , then there exist vertices a , b belonging toAa , such that d(a,b) = k. And for any vertice c that belongs to Ao ,wehaved(a,c) = kord(c,b) = k.
出处 《贵州师范大学学报(自然科学版)》 CAS 2013年第2期62-64,共3页 Journal of Guizhou Normal University:Natural Sciences
关键词 自同构群 点轨道 tree automorphism group Vertices orbit
  • 相关文献

参考文献3

二级参考文献8

  • 1[1]Godsil C D.On the Full Automorphism Group of A Graph.Combinatorica,1981,1:243~2 56
  • 2[2]Xu Mingyao,Automorphism Groups and Isomorphisms of Cayley Digraph.Discrete Ma th,1998,182:309~319
  • 3[3]Du Shaofei,Xu Mingyao,A Classification of Semisymmetric Graphs of Order 2pq.C om in Algebra,2000,28(6):2 685~2715
  • 4F. R. DeMeyer, T. McKenzie, and Ksehneider. The zero-divisor graph of a commutative semigroup [ J ]. Semigroup Forum, 2002,65 : 206 -214.
  • 5Tongsuo Wu, Fan Cheng. The structure of zero-divisor semigroup with graph Kn.K2 [ J ]. Semigroup Forum,2008, 76:330-340.
  • 6J. M. Howie. Fundamentals of Semigroup Theory [ M ]. London: Oxford University press , 1995.
  • 7P. M Higgins. Techniques of Semigroup Theory[ M]. London: Oxford University press, 1992.
  • 8王树和.图论[M].北京:科学出版社,2004.

共引文献7

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部