摘要
给定一棵有有限个顶点的无向、简单树,记作τ。把τ的自同构群,记作Autτ。a∈Vτ,定义A a={a i∈Vτ■α∈Autτ,使α(a i)=a},通过A a构造了树τ的子图τa=∪a,b∈Aa a≠bΓa,b,定义所有顶点之间的最大距离称为树τ的直径,记作diam(τ)。设diam(τa)=k≥0,k∈Z+,则■a,b∈A a,∈d(a,b)=k。并且c∈A a,有d(a,c)=k或者d(c,b)=k。
Given a simple undirected tree which has finite vertices, denoted τ as τ. We Denote auto-morphism group of τ as Autτ,for any a belongs to Vτ ,definite Aa = {ai∈Vτ| α∈Autτ,∈α(ai)=a}, we construct subgraph of τ with Aa , denoted τa =∪∨a,b∈Aa a≠b Гa,b,define diam (τ) as the maximum distance between all vertices called tree diameter. Assumed diam (τa)=k≥0,k∈Z^+ , then there exist vertices a , b belonging toAa , such that d(a,b) = k. And for any vertice c that belongs to Ao ,wehaved(a,c) = kord(c,b) = k.
出处
《贵州师范大学学报(自然科学版)》
CAS
2013年第2期62-64,共3页
Journal of Guizhou Normal University:Natural Sciences
关键词
树
自同构群
点轨道
tree
automorphism group
Vertices orbit