期刊文献+

多项式预测滤波技术在智能控制中的应用 被引量:3

Application of Polynomial Predictive Filtering Technique in Intelligent Control
下载PDF
导出
摘要 多项式预测滤波技术作为一种可靠的预测延迟信号的方法,已经成功地应用到仪器仪表、汽车控制和无线通信等相关智能控制系统研究领域中。本文对多项式预测滤波器进行了较为全面的介绍,首先从多项式预测滤波器的理论依据入手,并分析其应用条件,然后列举了其在工业领域的多种应用,最后论证了其在实时信号网络传输中的可应用性,为进一步的研究提供了有力的技术支持。 As a processing which can predict the delayed signal,Polynomial Predictive Filtering(PPF) technique has already been applied in the field of intelligent control system,such as industrial instrumentation,automobile control and wireless communication.This paper gives a more comprehensive exposition of PPF technique,such as the theoretical basis and application conditions.Some application instances are discussed and analyzed.Finally,the applicability of real-time signal network transmission based on PPF is validated to support the further research.
出处 《长春师范学院学报(自然科学版)》 2013年第2期32-36,共5页 Journal of Changchun Teachers College
基金 国家工信部2011年物联网发展专项资金项目(3D512F451421)
关键词 多项式预测滤波器 智能控制 仪器仪表 传感器 PPF intelligent control instrumentation sensor
  • 相关文献

参考文献30

  • 1B.Kosko, Fuzzy Engineering, Upper Saddle River[M].NJ:Prentice-Hall, 1997.
  • 2Pekka Heinonen, Yrjo Neuvo.FIR-Median Hybrid Filters with Predictive FIR Substructures[J].IEEE Transactions on Acoustics, Speech,and Signal Processing,1988,36(6):892-899.
  • 3S.J.Ovaska, Newton-type predictors-A signal processing oriented algorithm viewpoint[J].Signal Process, 1991,25:251-257.
  • 4P.T.Harju, S. J. Ovaska, Optimization of IIR polynomial predictive filter magnitude response[J].Signal Processing,1997,56:219-232.
  • 5Ovaska, Seppo J, Olli Vainio, Laakso Timo I. Design of Predictive IIR Filters Via Feedback Extension of FIR Forward Predictors[J]. IEEE Transactions on Instrumentation and Measurement, 1997,46(5): 1196-1201. S.S.Rao.Optimization Theory and Applications[M].2nd ed.New Delhi, India: Wiley,1984.
  • 6黄高勇,张家树.一种抑制直扩通信窄带干扰的新型非线性自适应预测滤波器[J].电子与信息学报,2007,29(6):1328-1331. 被引量:16
  • 7Ovaska, Seppo J. Improving the velocity sensing resolution of pulse encoders by FIR prediction[J].IEEE Transactions on Instrument- ation and Measurement,1991,40(3):657-658.
  • 8刘清.考虑测量噪声的传感器动态测量误差补偿[J].江苏大学学报(自然科学版),2006,27(2):160-163. 被引量:5
  • 9Sami Valiviita,Ovaska, Seppo J.Delayless acceleration measurement method for elevator control[J].IEEE Transactions on Industrial Electronics, 1998,45(2):364-366.
  • 10Vainio,S.J.Ovaska.Tachometer signal smoothing with analog discrete-time polynomial estimator[J].IEEE Trans. Ind. Electron., 1994,41:147-154.

二级参考文献17

  • 1刘清,沈祖诒,王柏林,廖忠.热敏电阻测量误差的非线性逆滤波器补偿[J].上海交通大学学报,2004,38(9):1601-1604. 被引量:6
  • 2于盛林,刘文波.用于减小随机误差的中值-模糊滤波器[J].计量学报,1995,16(4):297-300. 被引量:11
  • 3仇佩亮,郑树生,姚庆栋.扩频通信中干扰抑制的自适应非线性滤波技术[J].通信学报,1995,16(2):20-28. 被引量:26
  • 4Massicontte Daniel,MBA Megner Bruno.Neural-network-based method of correction in a nonlinear dynamic measuring system[J].IEEE Trans Instrum Meas,1999,49(4):1641-1645.
  • 5Almodarresi Yasin S M T,White N M.Application of artificial neural networks to intelligent weighing systems[C]// IEEE Proceedings of Science,Measurement and Technology,New York:Press IEEE,1999,46(1):265-269.
  • 6Hietanen P,Neuv Y.FIR-median hybrid filters with pre -dictive FIR substructures[J].IEEE Trans Acoust,Speech,Signal Processing,1988,36(6):892-899.
  • 7Almeida L A Ll d,Deep G S,Lima A M N,Neff H.A hysteretic model for a vanadium dioxide transition-edge microbolometer[J].IEEE Trans Instrum Meas,2001,50(4):1030-1035.
  • 8Pickholtz R L,Schilling D L,and Milstein L B.Theory of spread spectrum communications-a tutorial[J].IEEE Trans.on Commun.,1982,30(5):855-884.
  • 9Schilling D L,Pickholtz R L,and Milstein L B.Spread spectrum goes commercial[J].IEEE Spectrum,1990,27(8):40-41,44-45.
  • 10Masry E.Closed-form analytical results for the rejection of narrow-band interference in PN spread-spectrum system(Pt Ⅰ):Linear prediction filters[J].IEEE Trans.on Commun.,1984,32(8):888-896.

共引文献19

同被引文献27

  • 1沈颖,薛安克,王瑞荣.曲线拟合技术在信息融合性能评估中的应用[J].杭州电子科技大学学报(自然科学版),2005,25(2):25-28. 被引量:6
  • 2吴训忠,周军,邱恺.基于故障因子函数的鲁棒联邦滤波算法研究[J].宇航学报,2006,27(1):57-60. 被引量:10
  • 3Einicke G A. Smoothing, filtering and prediction: estimating the past,present and future [ R]. Rijeka, Croatia: Intech Press, 2012.
  • 4Stigler S M. The changing history of robustness [ J ]. The American Statistician, 2010,64(4) :277 -281.
  • 5Chatzis S, Kosmopoulos D, Varvarigou T. Robust sequential data modeling using an outlier tolerant hidden Markov model [ J ].IEEE Trans Pattern and Machine Intelligent,2009,31 (9) :1657 - 1669.
  • 6Maronna R A, Martin D R, Yohai V J. Robust statistics:theory and methods [ M ]. New York : John Wiley & Sons Inc, 2006.
  • 7Yin S, Wang G. Robust PLS approach for KPI related prediction and diagnosis against outliers and missing data[ J]. International Journal of Systems Science, 2014,45 (7) : 1375 - 1382.
  • 8Wang X C, Wang X L, Ma Y Q, et al. A fast MST- inspired kNN- based outlier detection method [ J ]. Information System, 2015, (18) :89 -112.
  • 9赵其杰,屠大维,高健,黄志华.基于Kalman滤波的视觉预测目标跟踪及其应用[J].光学精密工程,2008,16(5):937-942. 被引量:26
  • 10董劲男,秦贵和,张晋东,崔玥,范铁虎.基于多项式预测滤波理论的虚拟传感器构建[J].仪器仪表学报,2008,29(7):1408-1413. 被引量:2

引证文献3

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部