期刊文献+

Apriori优化算法在临床数据挖掘中的应用分析 被引量:1

Analysis on the Application of Apriori Optimization Algorithm in Clinical Data Mining
下载PDF
导出
摘要 频繁项集的生成是关联规则挖掘中的关键问题,本文提出了一种基于无向项集图的频繁项集挖掘算法。应用优化算法对病人就诊数据进行挖掘分析,与传统的频繁项集挖掘算法相比,优化算法在执行效率上有明显的提高,对临床实践研究提供有价值的指导意见。 The generation of frequent item sets is the key problem in clinical data mining,thus the frequent item sets mining algorithm is proposed in this paper based on undirected item sets graph.The mining analysis for patients' clinical data is carried by optimization algorithm.Compared with the traditional frequent item sets mining algorithms,the optimization algorithm has better execution efficiency,and it has guidance significance for clinical practice research.
作者 陈安娜
出处 《长春师范学院学报(自然科学版)》 2013年第2期45-48,共4页 Journal of Changchun Teachers College
关键词 临床数据挖掘 关联规则 频繁项集 无向项集图 Apriori algorithm clinical data mining frequent item sets undirected item sets graph
  • 相关文献

参考文献4

二级参考文献31

  • 1徐章艳,刘美玲,张师超,卢景丽,区玉明.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-192. 被引量:71
  • 2曾万聃,周绪波,戴勃,常桂然,李春平.关联规则挖掘的矩阵算法[J].计算机工程,2006,32(2):45-47. 被引量:33
  • 3朱意霞,姚力文,黄水源,黄龙军.基于排序矩阵和树的关联规则挖掘算法[J].计算机科学,2006,33(7):196-198. 被引量:7
  • 4章志明,黄龙军,余敏.一种基于矩阵的动态频繁项集挖掘算法[J].计算机工程与应用,2006,42(32):170-172. 被引量:4
  • 5AGRWAL R, SRIKAN R. Fast algorithms for mining association rules in large databases [ C]//Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1994:487 - 499.
  • 6PARK J S, CHEN M S, YU P S. An effective Hash based algorithm for mining association rules [ C]//Proceedings of International Conference on the Special Interest Group on Management of Data. New York: ACM, 1995:175 - 186.
  • 7HAN J, FU Y. Discovery of multiple-level association rules from large databases [ C]//Proceedings of the 20th International Conference on Very Large Database. Zuich, Switzerland: [ s. n. ], 1995: 420 - 431.
  • 8SAVASERE A, OMIECINSKI E, NAVATHE S. An efficient algorithm for mining association rules in large databases [ C]// Proceedings of the 21st International Conference on Very Large Database. New York: ACM, 1995:432-443.
  • 9TOLVONEN H . Sampling large databases for association rules [C]// Proceedings of the 22nd International Conference on Very Large Database. Bombay, India [ s. n. ], 1996:134 - 145.
  • 10BRIN S. Dynamic itemset counting and implication rules for market basket analysis [ C l// Proceedings of International Conference on the Special Interest Group on Management of Data. New York ACM, 1997:255-264.

共引文献133

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部