期刊文献+

强耦合捕食系统古典解的存在性

Existence of Classical Solutions to a Strongly Coupled Predator-Prey Model
下载PDF
导出
摘要 研究了在Neumann边界条件及反应函数功能性Ⅱ下带有自扩散和食饵趋向的捕食系统.对食饵趋向引入"Volume-Filling"机制,引入函数的Banach空间,定义了范数.应用压缩原理,H·lder连续,抛物方程Schauder估计及Lp估计,证明了此系统古典解的局部存在唯一性,并对其建立了先验估计,再把局部解延拓为全局解. Predator-prey model with self-diffusion and prey-taxis incorporating Holling type Ⅱ functional response was dealt with under homogeneous Neumann boundary condition."volume-filling" mechanism and Banach space were introduced,norm was defined.By applying the contraction mapping principle,the H·lder continuity,the parabolic Schauder estimates and parabolic Lp estimates,it proves that there exists a unique global classical solution of this system and establishs a priori estimate,then extends the local solution to a global solution.
作者 李成林
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2013年第2期98-102,108,共6页 Journal of North University of China(Natural Science Edition)
基金 国家教育部自然科学基金资助项目(XDJK2009C152)
关键词 古典解 H·lder连续 SCHAUDER估计 Lp估计 classical solutions H·lder continuity Schauder estimates Lp estimates
  • 相关文献

参考文献9

  • 1Okubo A. Diffusion and Ecological Problems: Mathematical Models [J ]. Berlin, New York: Spring-Verlag, 1980.
  • 2Ainseba B E, Bendahmane M, Noussair A. A reaction-diffusion system modeling predator-prey with prey-taxis[J]. Nonlinear Analysis: Real World Applications, 2008, 9: 2086-2105.
  • 3Tao Y. Global existence of classical solution to apredator-prey model with nonlinear prey-taxis [J]. Nonlinear Analysis: Real World Applications, 2010, 11: 2056-2064.
  • 4Hillen T, Painter K. A user's guide to PDE models for chemotaxis[J]. J. Math. Biol., 2009, 58: 183- 217.
  • 5Painter K, Hillen T. Volume-filling and quorum- sensing in models for chemosensitive movement[J]. Can. Appl. Math. Quart. , 2002, 10: 501-543.
  • 6Friedman A, Lolas G. Analysis of a mathematical model of tumor lymphangiogenesis [J] Math. Models Methods Appl. Sci. , 2005(1): 95-107.
  • 7Tao Y, Wang M. Global solution for a chemotactic- haptotactic model of cancer invasion [ J ]. Nonlinearity, 2008, 21: 2221-2238.
  • 8Ladyzenskaja 0 A, Solonnikov V A, Ural'ceva N N. Linear and Quasi Linear Equations of Paraboblic Type [M]. Amer. Math. Soc. Transl. Providence, RI, 1968.
  • 9Amann H. Dynamic theory of quasilinear parabolic equations H : Reacton diffusion systems E J ]. Differential Integal Equations, 1990(3): 13-75.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部