期刊文献+

稳定的零价纳米铁去除水中SeO_4^(2-)的动力学研究

Dynamic Study of Removal of SeO_4^(2-) in Water with Stabilized ZVI Nanoparticles
下载PDF
导出
摘要 采用液相还原法制备了纤维素稳定的零价纳米铁粒子(ZVI),并对不同浓度和pH条件下稳定的零价纳米铁粒子去除SeO42-的反应动力学进行了研究.纤维素稳定的零价纳米铁粒子去除SeO42-的初始动力学(t≤8h)反应符合准一级动力学方程.实验结果表明:在相同的实验条件下(pH=7.0,T=25℃),Kobs的最大值为0.24h-1.研究结果还表明pH值等于6.0是ZVI与SeO42-发生氧化还原反应的最佳pH值. The cellulose stabilized zero valent irion(ZVI) was prepared by liquid phase reduction method.The kinetic property of removal of SeO42- by stabilized zero valent iron(ZVI)nanoparticles was investigated at different initial concentrations and pH values.The initial(t≤8 h) kinetic data,which were gotten from reduction SeO42- by cellulose stabilized ZVI,were fitted pseudo first-order kinetics.The experimental results show that the maximum value of the Kobs is 0.24 h-1 at the same experimental conditions(pH=7.0,T=25 ℃).The results also indicate that the optimal pH value is identified to be 6.0 that ZVI and SeO42- have an oxidation-reduction reaction.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2013年第2期157-160,共4页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金重点项目(41230638) 国家自然科学基金资助项目(41072265 40810152) 山西省百强人才引进计划
关键词 纳米粒子 零价铁 反应动力学 nanoparticles zero valent iron selenium reaction kinetics
  • 相关文献

参考文献2

二级参考文献50

  • 1Davis A, Sherwin D, Ditmars R, et al. An analysis of soil arsenic records of decision. Environ Sci Technol, 2001, 35:2401-2406.
  • 2Fendorf S, La Force M J, Li G C. Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead. J Environ Qual, 2004, 33:2049-2055.
  • 3Smith E, Naidu R, Alston A M. Arsenic in the soil environment: A rev, iew. Adv Agron, 1998, 64:149-195.
  • 4Davis A, Ruby M V, Bloom M, et al. Mineralogic constraints on the bioavailability of arsenic in smelter-impacted soils. Environ Sci Technol, 1996, 30:392-399.
  • 5Dixit S, Hering J G. Comparison of arsenic (Ⅴ) and arsenic (Ⅲ) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ Sci Technol, 2003, 37:4182-4189.
  • 6Ford R G. Rates of hydrous ferric oxide crystallization and the influence on eoprecipitated arsenate. Environ Sci Technol, 2002, 36: 2459-2463.
  • 7Fuller C C, Davis J A, Waychunas G A. Surface-chemistry of ferrihydritc .2. Kinetics of arsenate adsorption and coprecipitation. Geochim Cosmochim Acta, 1993, 57:2271-2282.
  • 8Grossl P R, Eick M, Sparks D L, et al. Arsenate and chromate retention mechanisms on goethite.2. Kinetic evaluation using a pressure-jump relaxation technique. Environ Sci Technol, 1997, 31: 321-326.
  • 9Jain A, Raven K P, Loeppert R H. Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH-release stoichiomelry. Environ Sci Technol, 1999, 33:1179-1184.
  • 10Manceau A. The mechanism of anion adsorption on iron-oxides evidence for the bonding of arsenate tetrahedra on free Fe(O,OH) edges. Geochim Cosmochim Acta, 1995, 59:3647-3653.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部