期刊文献+

基于IMMEPF的多普勒盲区目标异类多传感器联合跟踪 被引量:3

Heterogeneous Multi-Sensor Joint Tracking of Target Hidden in Blind Doppler Zone Based on IMMEPF
下载PDF
导出
摘要 对于机载脉冲多普勒雷达,多普勒盲区是不可避免的。为解决多普勒盲区内机动目标跟踪问题,提出了基于扩展卡尔曼粒子滤波(IMMEPF)的雷达和ESM联合跟踪算法。该算法融合了交互式多模型(IMM)、粒子滤波(PF)和扩展卡尔曼滤波(EKF)的优势,采用多模型结构以匹配目标的运动模型。粒子滤波能处理非线性、非高斯问题,而采用EKF产生粒子,由于考虑了当前观测值,使得粒子的分布更接近后验概率密度分布,克服粒子的退化现象,从而提高估计精度。仿真结果表明,给出的算法能够显著提高对落入多普勒盲区内的目标点迹的跟踪精度。 For airborne pulse Doppler (PD) radar, the blind Doppler zone (BDZ) is inevitable. To solve the problem of tracking maneuvering targets in BDZ, a joint tracking algorithm of radar and ElectronicSupport Measure (ESM) based on extended Kalman particle filter (IMMEPF) was presented, which combined the advantages of interactive multiple model (EMM), particle filter (PF) and extended Kalmanfilter (EKF), and adopted multi-model structure to match the target's movement model. Particle filter was capable of handling the non-linear, non-Gaussian problem, and EKF was used to generate particle. Theparticle distribution was closer to a posterior probability density distribution due to its consideration of current measurements, which overcame the particle degradation phenomenon, thus improving the estimationaccuracy. Simulation resuhs showed that the given algorithm could significantly improve the tracking accuracy of targets hidden in BDZ.
出处 《电光与控制》 北大核心 2013年第5期88-93,共6页 Electronics Optics & Control
关键词 目标跟踪 多普勒盲区 异类多传感器 交互多模 扩展卡尔曼粒子滤波 target tracking blind Doppler zone heterogeneous multi-sensor interactive multiple model extended Kalman particle filter
  • 相关文献

参考文献13

  • 1CLARK J M C, KOUNTOURIOTIS P A, VINTER R B. Amethodology for incorporating the Doppler blind zone intarget tracking algorithms [ C ] //The 11th InternationalConference on Information Fusion Proceedings, 2008:1-8.
  • 2FARINA A. Application of knowledge-based techniques totracking function [ R]. Rome : DTIC Document, 2006.
  • 3SHI Z G, HONG S H, CHEN K S. Tracking airborne tar-gets hidden in blind Doppler using current statistical mo-del particle filter [ J ]. Progress in Electromagnetics Re-search, 2008, 82:227-240.
  • 4GORDON N,RISTIC B. Tracking airborne targets occa-sionally hidden in the blind Doppler [ J ]. Digital SignalProcessing, 2002, 12(2/3) :383-393.
  • 5LIU Jichen, JI Guangji, ZHOU Su. Applying and imple-mentation of the Extended Kalman Filter ( EKF) withsensitive equation : A PEMFC case study [ C ]//Proceed-ings of IMECS ,Hong Kong, 2012,864-868.
  • 6RUSDINAR A, KIM I,LEE J,et al. Implementation of real-time positioning system using extended Kalman filter andartificial landmark on ceiling [ J ]. Journal of MechanicalScience and Technology, 2012, 26(3) :949-958.
  • 7KLUGE S, REIF K, BROKATE M. Stochastic stability ofthe extended Kalman filter with intermittent observations[C ] //IEEE Transcations on Automatic Control, 2010, 55(2):514-518.
  • 8JULIER S J. The scaled unscented transformation[ C]//Proceedings of the American Control Conference, 2002 :45554559.
  • 9BLOM HAP, BAR-SHALOM Y. The interacting multiplemodel algorithm for systems with markovian swit-ching co-efficient [C ] //IEEE Transactions on Automatics Con-trol, 1998, 33(8) :780-783.
  • 10OKUMA K, TALEGHANI A, FREITAS N DE, et al. A boos-ted particle filter : Multitarget detection and tracking [ J ].Computer Vision,麵,3021:28-39.

同被引文献26

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部