期刊文献+

蕴含H可图序列的刻划

On Potentially H-graphic Sequences
下载PDF
导出
摘要 对于给定图Г,称可图序列π=(d1,d2...,dn)是蕴含Г-可图的,若存在π的一个实现以Г为其子图.本文刻划了蕴含H的可图序列,其中H为剖分完全图K4的相邻两条边所得到的剖分图. For given a graph F, a graphic sequence π = (d1,d2,...,dn) is said to be potentially Г -graphic if there exists a realization of π containing Г as a subgraph. In this paper, we characterize the potentially H-graphic sequences, where H is derived by subdivising two adjacent edges of K4 .
作者 庞艳芳
出处 《漳州师范学院学报(自然科学版)》 2013年第1期1-8,共8页 Journal of ZhangZhou Teachers College(Natural Science)
基金 国家自然科学基金项目(11101358) 福建省自然科学基金项目(2011J01026) 福建省自然科学基金青年人才创新项目(2011J05014) 福建省教育厅资助科技项目(JA11165) 漳州师范学院研究生创新项目
关键词 度序列 蕴含H的可图序列 剖分 graph degree sequence potentially H-graphic sequences subdivising
  • 相关文献

参考文献3

二级参考文献15

  • 1Erdos, P., Jacobson, M. S., Lehel, J.: Graphs realizing the same degree sequences and their respective clique numbers, in: Y. Alavi et al., (Eds.), Graph Theory, Combinatorics and Applications, John Wiley and Sons,New York, 1, 439-449, 1991
  • 2Gould, R. J., Jacobson, M. S., Lehel, J.: Potentially G-graphical degree sequences, in: Y. Alavi, et al.,(Eds.), Combinatorics, Graph Theory, and Algorithms, New Issues Press, Kalamazoo Michigan, 1,451-460,1999
  • 3Li, J. S., Song, Z. X.: An extremal problem on the potentially Pk-graphic sequence. Discrete Math., 212,223-231 (2000)
  • 4Li, J. S., Song, Z. X.: The smallest degree sum that yields potentially Pk-graphic sequences. J. Graph Theory, 29, 63-72 (1998)
  • 5Li, J. S., Song, Z. X., Wang, P.: An Erdos-Jacobson-Lehel conjecture about potentially Pk-graphic sequences. J. Univ. Sci. Tech. China, 28, 1-9 (1998)
  • 6Li, J. S., Song, Z. X., Luo, R.: The Erdos-Jacobson-Lehel conjecture on potentially Pk-graphic sequences is true. Science in China, Set. A, 41, 510-520 (1998)
  • 7Kleitman, D. J., Wang, D. L.: Algorithm for constructing graphs and digraphs with given valences and factors. Discrete Math., 6, 79-88 (1973)
  • 8Rao, A. R.: The clique number of a graph with given degree sequence, in Proc. Symposium on Graph Theory, A. R. Rao ed., MacMillan and Co. India Ltd., L S. I. Lecture Notes Series, 4, 251-267, 1979
  • 9Rao, A. R.: An Erdos-Gallai type result on the clique number of a realization of a degree sequence,unpublished
  • 10Kezdy, A. E., Lehel, J.: Degree sequences of graphs with prescribed clique size, in: Y. Alavi et al., (Eds.),Combinatorics, Graph Theory, and Algorithms, New Issues Press, Kalamazoo Michigan, 2, 535-544, 1999

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部