期刊文献+

调和函数在多重L算子作用下的单叶半径估计

Estimates on the Univalent Radius for Harmonic Mappings under Multiple Differential Operators
下载PDF
导出
摘要 若f(z)为定义在单位圆盘D={z||z|<1}上的调和函数,L=z(/z)(/z)为微分算子.本文研究在调和函数f(z)的系数模满足两个著名猜想及某些系数模界限条件下,多重L算子作用于f(z)下的单叶半径估计问题,分别得到相应的精确单叶半径表达式. Suppose that f(z) is a harmonic mapping on the unit disk D={z||z|〈1}. Let L represents the differential operator L=zd/di-d/ . In this note, we obtain several sharp estimates on univalent radii for the harmonic mappings that are obtained by multiple differential operators L acting on the given harmonic mapping f(z) with its coefficients satisfying two famous conjecture bounds and some general expression bound.
出处 《漳州师范学院学报(自然科学版)》 2013年第1期9-18,共10页 Journal of ZhangZhou Teachers College(Natural Science)
基金 福建省自然科学基金资助项目(2011J0101)
关键词 调和函数 微分算子 单叶半径 系数界限 harmonic mapping differential operator univalent radius coefficient bound
  • 相关文献

参考文献11

  • 1Lewy H. On the non-vanishing of the Jacobian in certain one-to-one mappings [J]. Uspekhi Mat Nauk, 1948, 3(2): 216-219.
  • 2Abdulhadi Z, Muhanna V A. Landau's theorem for biharmonic mappings[J]. J Math Anal Appl, 2008, 338(1): 705-709.
  • 3Abdulhadi Z, Muhanna Y A, Khuri S. On some properties of solutions of the biharmonic equation[J]. Appied Mathematics andComputation, 2006, 177(1): 346-351.
  • 4Abdulhadi Z,Muhanna Y A, Khuri S. On univalent solutions of the biharmonic equation[J]. Journal of Inequalities andApplications, 2005, 5: 469-478.
  • 5夏小青,黄心中.一类双调和映照的单叶半径估计[J].华侨大学学报(自然科学版),2011,32(2):218-221. 被引量:5
  • 6Lhi M S, Liu Z W. On Bloch con.stiiius for certain harmonic mappings(J]. Southeast Asian Bulletin of Mathematics, 2011, 35:1-10.
  • 7Liu M S. Landau's theorems for biharmonic mappings[J]. Complex Variables and Elliptic Equations, 2008,53(9): 843-855.
  • 8Chen S, Ponnusamy S,Wang X. Landau's theorem for certain biharmonic mappings[J]. Applied Mathematics and Computation,2009,208(2): 427-433.
  • 9Clunie J, Sheil-SmallLT. Harmonic univalent functions[J]. Ann. Acad. Sci. Fenn. Ser. A. I. Math., 1984,9: 3-25.
  • 10Chen S. Ponnusamy S.Wang X. Coefficient estimates and Landou-Bloch's constant for planar harmonic Mappings[J]. BullMalaysian Math Science Soc, 2011, 34(2): 255-265.

二级参考文献10

  • 1LIU MingSheng School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China.Estimates on Bloch constants for planar harmonic mappings[J].Science China Mathematics,2009,52(1):87-93. 被引量:16
  • 2DUREB P.Harmonic mappings in the plane[M].Cabridge:Cabridge Univ Press,2004.
  • 3ABDULHADI Z,MUHANNA Y A.Landau's theorem for biharmonic mappings[J].J Math Anal Appl,2008,338(1):705-709.
  • 4CHEN S.PONNUSAMY S,WANG X.Landau's theorem for certain biharmonic mappings[J].Applied Mathematics and Computation,2009,208 (2):427-433.
  • 5LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(10):689-692.
  • 6CHEN H H,GAUTHIER P M,HENGARTNER W.Bloch constants for planar harmonic mappings[J].Proc Amer Math Soc,2000,128 (11):3231-3240.
  • 7HUANG Xin-zhong.Estimates on Bloch constants for planar harmonic mappings[J].J Math Anal Appl,2007,337(2):880-887.
  • 8LIU Ming-sheng.Landau's theorem for planar harmonic mappings[J].Computers and Mathematics with Appications,2009,57(7):1142-1146.
  • 9LIU Ming-sheng.Landau's theorems for biharmonic mappings[J].Comlex Variables and Elliptic Equations,2008,53(9):843-855.
  • 10ABDULHADI Z,MUHANNA Y A,KHURI S.On some properties of solutions of the biharmonic equation[J].Appied Mathematics and Computation,2006,177(1):346-351.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部