摘要
若f(z)为定义在单位圆盘D={z||z|<1}上的调和函数,L=z(/z)(/z)为微分算子.本文研究在调和函数f(z)的系数模满足两个著名猜想及某些系数模界限条件下,多重L算子作用于f(z)下的单叶半径估计问题,分别得到相应的精确单叶半径表达式.
Suppose that f(z) is a harmonic mapping on the unit disk D={z||z|〈1}. Let L represents the differential operator L=zd/di-d/ . In this note, we obtain several sharp estimates on univalent radii for the harmonic mappings that are obtained by multiple differential operators L acting on the given harmonic mapping f(z) with its coefficients satisfying two famous conjecture bounds and some general expression bound.
出处
《漳州师范学院学报(自然科学版)》
2013年第1期9-18,共10页
Journal of ZhangZhou Teachers College(Natural Science)
基金
福建省自然科学基金资助项目(2011J0101)
关键词
调和函数
微分算子
单叶半径
系数界限
harmonic mapping
differential operator
univalent radius
coefficient bound