期刊文献+

智能预测模型在多粘芽孢杆菌发酵中的应用

Research on paenibacillus polymyxafermentation of intelligent forecasting model
下载PDF
导出
摘要 多粘芽孢杆菌发酵是一个极其复杂的生物反应过程,其诸多参数具有动态非线性。传统的发酵实验都是在不断地尝试中进行的,如果能预测发酵过程中的主要参数则会大大提高实验效率。用一种智能预测模型,即将Kohonen网络、Elman神经网络和粒子群优化算法有机结合,可以预测发酵过程中的主要参数。该模型的仿真实验结果符合多粘芽孢杆菌发酵的动力学特点,实现了部分参数的有效预测。研究结果表明该智能预测模型不但能够综合各种单一预测模型的优点,而且能够随时间的推移其内在结构不断变化,适用于多粘芽孢杆菌发酵过程的参数预测和特性优化。相对于传统预测方法,提高了预测效率。 PaenibaciUus polymyxa fermentation is complex process of bioreaction. Its parameters are dynamic and non-linear. The tradi- tional experiment of fermentation was studied with the Kohonen network, Elman network and the particle swarm optimization algorithm combined to establish the intelligent forecasting model in this paper. The simulation results of the model were accord with kinetic fea- ture of paenibacillus polymyxa fermentation, and the predicted values of some parameters were reasonable. The experimental results showed that not only can the intelligent forecasting model sum up the merit of kinds of single model, but also can change the interior configuration. Compared with the traditional prediction method, the intelligent forecasting model enhanced the forecasting efficiency.
出处 《生物学杂志》 CAS CSCD 2013年第2期87-89,104,共4页 Journal of Biology
基金 安徽高校省级自然科学研究项目(KJ2012B014 KJ2012A039)
关键词 智能预测 多粘芽孢杆菌 发酵特性 建模 优化 intelligent forecasting paenibacillus polymyxa fermentation feature modeling optimization
  • 相关文献

参考文献14

  • 1刘尧猛,马永军,杨美艳.改进型Elman神经网络发酵过程建模研究[J].计算机工程与应用,2009,45(32):240-243. 被引量:2
  • 2Niu, D P, Wang F L, Zhang L L, et al. Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression[ J]. Chemometrics and Intelligent Laboratory Systems, 2011, 105(1) : 125 -130.
  • 3Ge H W, Qian F, Liang Y C, et al. Identification and control of nonlinear systems by a dissimilation particle swarm optimization - based Elman neural network [ J ]. Nonlinear Analysis : Real World Applications, 2008, 9(4) : 1345 - 1360.
  • 4He Q, Wang L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems [ J ]. Engineering Applications of Artificial Intelligence, 2007, 20 : 89 - 99.
  • 5Becker T, Enders T, Delgado A. Dynamic neural networks as a tool for the online optimization of industrial fermentation[ J ]. Bioprocess and Biosystems Engineering, 2002, 24 (6) : 51 - 56.
  • 6李金金,田雨波.粒子群优化算法边界条件研究[J].计算机工程,2011,37(24):173-175. 被引量:3
  • 7Kurt A, Oktay A B. Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks [J].Expert Systems with Applications, 2010, 37 (12) : 7986 - 7992.
  • 8隋青美,王正欧.发酵过程混合神经网络模型及其仿真[J].系统仿真学报,2002,14(4):415-417. 被引量:7
  • 9Brunelli U, Piazza V, Pignato L, et al. Three hours ahead prevision of SO2 pollutant concentration using an Elman neural based forecaster[ J ]. Building and Environment, 2008, 43 (3) : 304 - 314.
  • 10Kelo S, Dudul S. A wavelet Elman neural network for short - term electrical load prediction under the influence of temperature [ J ]. International Journal of Electrical Power & Energy Systems, 2012, 43 (1) : 1063 - 1071.

二级参考文献42

  • 1朱晟,蒋传文,侯志俭.基于气象负荷因子的Elman神经网络短期负荷预测[J].电力系统及其自动化学报,2005,17(1):23-26. 被引量:40
  • 2马勇,黄德先,金以慧.动态软测量建模方法初探[J].化工学报,2005,56(8):1516-1519. 被引量:27
  • 3熊伟丽,徐保国.基于PSO的SVR参数优化选择方法研究[J].系统仿真学报,2006,18(9):2442-2445. 被引量:66
  • 4张会清,王普,高学金,范青武.生物发酵参数相关性及菌体浓度软测量技术的研究[J].计算机工程与应用,2006,42(30):215-217. 被引量:2
  • 5JAK Suykens,J vandewalle.Least Squares Support Vector Machine Classifiers [J]. Neural Processing Letters, 1999,9 (3): 293-300.
  • 6AN S,LIU W, VENKATESH S.Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression [J].Pattem Recognition,2007,40(8):2154-2162.
  • 7SUN Jun,XU Wenbo.Particle swarm optimization with particles having quantum behavior[C].USA:IEEE,2004:325-331.
  • 8SUN Jun,XU Wenbo,Bin Feng.A global search strategy of quantum-behaved Particle swarm optimization[C].Singapore:IEEE, 2004:111-116.
  • 9Kennedy J, Eberhart R C. Particle Swarm Optimization[C] //Proc. of IEEE International Conference on Neural Networks. Piscataway, USA: IEEE Service Center, 1995: 1942-1948.
  • 10Robinson J, Rahmat-Samii Y. Particle Swarm Optimization in Electromagnetics[J]. IEEE Trans. on Antennas Propagation, 2004, 52(2): 397-407.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部