期刊文献+

剪式可展机构非线性动力学分析子系统方法 被引量:3

A subsystem method for nonlinear dynamic analysis of a deployable scissor-like mechanism
下载PDF
导出
摘要 针对剪式可展机构由相互耦合的闭环子系统构成的多体系统,给出基于子系统模型的非线性动力学建模方法。将剪式可展机构分解为多个简单子系统,推导出子系统等效质量矩阵和等效力向量,通过子系统间反向递推求解整个多体系统等效质量矩阵及等效力向量,将复杂运动方程简单化,缩减求解规模。该子系统模型可重复使用,且当子系统的结构或子系统个数发生变化时,便于整个剪式可展机构模型修改,易于程式化建模。与传统方法对比验证该方法的正确性。 A deployable scissor-like mechanism consists of intercoupled closed-loop subsystems. A nonlinear dynamic modeling method for a complex muhibody system with such topological structure was put forward based on subsystem modeling. The equivalent inertia matrices and force vectors of subsystems were derived after the deployable scissor-like mechanism was divided into several simple subsystems. The equivalent inertia matrix and force vector of the overall system could be deduced with backward recurring subsystem by subsystem. Based on this, a large-scale equation of motion was inverted into simple equations and the complexity of its solution was reduced. The subsystem model could be used repeatedly and the overall model of the deployable scissor-like mechanism could be updated or the number of subsystems was modified. The modeling process could be realized easily with a The comparison with traditional methods validated the proposed method. easily when the structure computer programming.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第7期34-37,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50875044) 南京工程学院创新基金项目(CKJ2011014)
关键词 剪式可展机构 非线性动力学 子系统方法 deployable scissor-like mechanism nonlinear dynamics subsystem method
  • 相关文献

参考文献9

  • 1杨毅,丁希仑.剪式单元可展机构静力学分析与拓扑优化设计[J].中国机械工程,2010,21(2):184-189. 被引量:30
  • 2Kipe G, S:ylemez E, Ozgtir Kisisel A U. A family of deployable polygons and polyhedral [ J ]. Mechanism and Machine Theory,2008, 43 (5) : 627 - 640.
  • 3Cherniavsky A G, Gulyayev V I, Gaidaichuk V V, et al. Large deployable space antennas based on usage of polygonal pantograph [ J ]. Journal of Aero Space Engineering, 2005, 18(3) : 139 -145.
  • 4Oh J K, Lee A Y. Design and control of bridge inspection robot system[ C]. Proceedings of the IEEE International Conference on Mechatronics and Automation,2007:3634 - 3639.
  • 5Kim S S. A subsystem synthesis method for efficient vehicle multibody dynamics [ J ]. Multibody System Dynamics, 2002, 7 (2) :189 -207.
  • 6王皓,林忠钦,来新民.平面机械系统动力学建模的复合方法[J].中国科学(E辑),2008,38(5):715-728. 被引量:3
  • 7Jain A. Recursive algorithms using local constraint embedding for multibody system dynamics [ C ]. Proceedings of the ASME 2009 International Design Engineering Technical Conferences &Computers and Information in Engineering Conference. San Diego, USA: ASME, 2009, 4:139-147.
  • 8Kim S S, Wang J H. Subsystem synthesis methods with independent coordinates for real-time multibody dynamics [ J ]. Journal of Mechanical Science and Technology, 2007,19 (1) : 312 -319.
  • 9Tsai F F, Haug E J. Real-time multibody system dynamic simulation: part I a modified recursive formulation and topological analysis [ J ]. Mechanics Based Design of Structures and Machines, 1991,19 ( 1 ) :99 - 127.

二级参考文献32

共引文献30

同被引文献29

  • 1赵孟良,关富玲,吴开成.空间可展板壳结构的展开分析[J].浙江大学学报(工学版),2006,40(11):1837-1841. 被引量:6
  • 2Pinero E P. Expandable space framing[J]. Progressive Architecture, 1962, 43(6): 154-155.
  • 3Hoberman C. Reversibly expandable doubly-curved truss structures [P]. US Patent 4,942,700,1990.
  • 4You Z,Pellegrino S. Foldable bar structures[J]. International Journal of Solids and Structures,1997,34(15): 1825-1847.
  • 5Kassabian P,You Z,Pellegrino S.Retractable roof structures[J]. Proceedings Institution of Civil Engineers Structures and Buildings,1999,134(2): 45-56.
  • 6Buhl T,Jensen F V,Pellegrino S. Shape optimization of cover plates for retractable roof structures[J]. Computers and Structures,2004,82(15/16): 1227-1236.
  • 7Luo Y Z,Mao D C,You Z. On a type of radially retractable plate structures[J]. International Journal of Solids and Structures,2007,44(10): 3452-3467.
  • 8Shan W. Computer analysis of foldable structures[J]. Computers and Structures,1996,42(6): 903-912.
  • 9Pellegrino S,Calladine C R. Matrix analysis of statically and kinematically indeterminate frameworks[J]. International Journal of Solids Structure,1986,22(4): 409-428.
  • 10Kumar P,Pellegrino S. Computation of kinematic paths and bifurcation points[J]. International Journal of Solids Structures,2000,37(46/47): 7003-7027.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部