期刊文献+

具连续分布滞量的二阶半线性阻尼微分方程的振动准则 被引量:1

Oscillation criteria of a second order half-linear damped differential equation with distributed deviating argument
下载PDF
导出
摘要 通过研究一类具连续分布滞量的二阶半线性阻尼微分方程的振动性。利用函数不等式技巧、广义Riccati变换和H(t)函数等方法,给出此类方程所有解的新振动准则,所得结果推广和改进了文献的结果。 Here, Oscillation of a class of half-linear damped differential equations with distributed deviating argument was studied. By means of the function inequality technique, the generalized Riccati transformation and the function H (t) , several new oscillation criteria were obtained for all solutions to the equation. The results entended and improved some known ones in literatures.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第8期1-4,12,共5页 Journal of Vibration and Shock
基金 湖南省十二五重点建设学科基金资助项目(湘教发[2011]76号) 2012年湖南省教育厅基金项目资助(12C0541) 衡阳师范学院青年骨干教师培养对象资助项目(2012)
关键词 连续分布滞量 阻尼项 半线性微分方程 振动性 distributed deviating argument damped term half-linear differential equation oscillation
  • 相关文献

参考文献9

  • 1Lin X J, Liu W B, Yuanhong. Oscillation criteria for even-order half-linear distributed delay differential equations with damping [J]. Computers and Mathematics with Applications, 2010, 60 : 2206 - 2211.
  • 2Wang Q. Oscillation and asympotic for second-order half-linear differential equations[ J ]. Appl. Math. Comput, 2001,122: 253 - 266.
  • 3Li H J, Yeh C C. Sturm comparison theorem for half-linearsecond order differential equations [ J ]. Proc. Roy. Edinburgh, 1995,125A : 1193 - 1240.
  • 4Manojlovic J V. Oscillation criteria for second-order half-linear differential equations [ J ]. Math. Comput. Modell, 1999,30 : 109 - 119.
  • 5Yang Q G, Cheng S S. Oscillation of second order half-linear differential equations with damping[ J]. Georgian Mathematical Journal, 2003,10:785 - 797.
  • 6Xing L H,Zheng Z W. New oscillation criteria for forced second order half-linear differ-ential equations with damping [ J ]. Applied Mathematics and Compution,2008 ,198 :481 - 486.
  • 7Hardy G H, Littlewppd J E, Polya G. Inequalities, 2"d ed. Cambridge : Cambrige Univ. Press, 1988.
  • 8Philos ch G. A new criterion for oscillatory and behavior of delay differential equations [J]. Bull. Aead. Pol. Sei. Sci. Math. , 1981,39 : ,61 - 64.
  • 9Philos eh G. Oscillation theorems for linear differential equations of second order[ J]. Arch Math(Basel) , 1989,53 :, 482 - 492.

同被引文献34

  • 1杨甲山.时间测度链上具非线性中立项的二阶阻尼动力方程的振动性[J].浙江大学学报(理学版),2012,39(3):261-265. 被引量:13
  • 2潘元元,韩振来.时标上二阶中立型时滞动力方程的振动性[J].济南大学学报(自然科学版),2012,26(2):191-194. 被引量:5
  • 3RAVI P,AGARWAL R P,BOHNER M,et al.Non- oscillation and Oscillation:Theory for Functional Dif- ferential Equations[M].New York:Marcel Dekker,2004.
  • 4BOHNER M,PETERSON A.Dynamic Equations on Time Scales,An Introduction with Applications[M].Boston:Birkhauser,2001.
  • 5AGARWAL R P,BOHNER M,GRACE S R,et al.Discrete Oscillation Theory[M].New York:Hindawi Publishing Corporation,2005.
  • 6ZHANG Q X,GAO L.Oscillation criteria for second- order half-linear delay dynamic equations with damping on time scales[J].Sci Sin Math,2010,40(7):673-682.
  • 7SAHINER Y.Oscillation of second order delay differ- ential equations on time scales[J].Nonlinear Analysis:Theory,Methods & Applications,2005,63:1073-1080.
  • 8HAN Z L,BAO S,SUN S R.Oscillation of second- order delay dynamic equations on time scales[J].Jour- nal of Applied Mathematics & Computing,2009,30(1):459-468.
  • 9SUN S,HAN Z,ZHANG C.Oscillation of second order delay dynamic equations on time scales[J].J Ap- pl Math Comput,2009,30:459-468.
  • 10GRACE S R,AGARWAL R P,KAYMAKCALAN B,et al.Oscillation theorems for second order nonlinear dy- namic equations[J].J Appl Math Comput, 2010,32:205-218.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部