期刊文献+

线性系统Luenberger能观规范型的充要条件及特征 被引量:2

Necessary and sufficient condition for the realization of Luenberger observable canonical form and its structure characteristics
下载PDF
导出
摘要 提出了一种完全能观线性MIMO(multi-input multi-output)系统的能观矩阵的线性无关行向量的搜索方案,并基于此搜索方案提出了一种将完全能观线性MIMO系统化为Luenberger能观规范型的变换矩阵的构造方法。通过对几个定理的证明,阐述了此非奇异变换矩阵与Luenberger能观规范型的关系,提出了将Luenberger能观规范型按照结构的差异划分为广义和狭义2种规范型的观点,并给出了完全能观线性MIMO系统的广义和狭义Luenberger能观规范型实现的充要条件,用3个实例验证了上述观点和方法的正确性和可行性。同时给出了一种方法使得一类不满足Luenberger能观规范型实现条件的线性MIMO系统能够在不改变系统物理结构的前提下变换为Luenberger能观规范型,并通过2个实例的分析和比较对此方法进行了阐述。 An approach is put forward to find the linealy independent vector of the observability matrix of completely observable linear multi-input multi-output(MIMO) system.Based on this approach,a method is advanced to obtain the transformation matrix which can be used for transforming the linear MIMO system to its Luenberger observable canonical form.Through the proving of several theormes,the relation between the transformation matrix and Luenberger observable canonical form is exposited and the Luenberger observal form is divided into two classes,the generalized Luenberger observable canonical form and the special Luenberger observable canonical form,according to its structure difference.The necessary and sufficient condition for the realization of generalized and special Luenberger observable canonical form of completed observable linear MIMO system are given,and three examples are used to verify the correctness and feasibility of the above viewpoint and method.Meanwhile,another method is put forward to transform a class of linear MIMO system,under the condition of unchanging its physical structure,which does not meet the above necessary and sufficient condition,to its Luenberger observable canonical form.Two examples are analyzed and compared to elaborate on the method.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第4期1-10,共10页 Journal of Chongqing University
基金 重庆市科委科技攻关项目(CSTC2009AB6021)
关键词 龙柏格 能观规范型 能观性 线性系统 Luenberger observable canonical form observability linear systems
  • 相关文献

参考文献14

  • 1Luenberger D G. Canonical forms for linear multivariable systems [ J ]. IEEE Transactions on Automatic Control,1967,12(3) :290 -293.
  • 2Luenberger D G. Observers for multivariable systems [J]. IEEE Transactions on Automatic Control, 1966, 11(2) :190-197.
  • 3Luenberger D G. An introduction to observers[J]. IEEE Transactions on Automatic Control, 1971,16 (6) : 596-603.
  • 4Kalman R E. Canonical structure of linear dynamic systems[J]. Proceedings of the National Academy of Sciences of United States of America, 1962, 48 (4): 596-600.
  • 5Kalman R E,Ho Y C,Narendra K S. Controllability of linear dynamical systems [ J ]. Contributions to Differential Equations, 1961,1(3) : 189- 213.
  • 6Kalman R E. Mathematical descriptions of linear dynamical systems [J]. Journal of the Society for Industrial and Applied Mathematics, Series A : Control, 1963,1(2) :152-192.
  • 7Gilbert E. Controllability and observability in multlvanable control systems[J], journal oi me Soclety for Industrial and Applied Mathematics, Series A: Control, 1963,2(1) : 128-151.
  • 8Morgan B S, Jr. The synthesis of linear multivariable systems by state-variable feedback [J]. IEEE Transactions on Automatic Control, 1964, 9 (4): 405- 411.
  • 9Luo Z. Transformations between canonical forms for multivariable linear constant systems[J]. IEEE Transactions on Automatic Control, 1977, 22 (2): 252-256.
  • 10江宁强,宋文忠.MIMO系统转化为Luenberger能控规范型的条件[J].控制理论与应用,2007,24(5):866-868. 被引量:2

二级参考文献9

  • 1KAILATH T. Linear Syetems[M]. Englewood Cliffs: Prentice-Hall, 1980.
  • 2LUENBERGER D G. Canonical forms for linear multivariable systems[J]. IEEE Trans on Automaac Control, 1967, 12(3): 290 - 293.
  • 3LUO Z.Transformations between canonical forms for multivariable linear constant systems[J]. IEEE Trans on Automatic Control, 1977, 22(2): 252 - 256.
  • 4JORDKY D, SRIDHAR B. An efficient algorithm for calculation of the Luenberger canonical form[J]. IEEE Trans on Automatic Control, 1973, 18(3): 292 - 295.
  • 5GUPTA R D, FAIRMAN F W. Luenberger's canonical form revisited[J]. IEEE Trans on Automatic Control, 1974, 19(4): 440 - 441.
  • 6WANG L F.Fault-tolerent design in a networked vibration control system[C]//Proc of the 29th IEEE Conf lndustrial Electronics Society. [S.l.]: [s.n.], 2003, 3:2823 - 2828.
  • 7Wonham W M. Linear Multivariable Control.-A Geometric Approach[M]. 2nd Edition. New York.-Springer-Verlag, 1979.
  • 8涂生.线性控制系统的分析与设计(状态空间方法)[G].南开大学控制理论教研室.南自控8001(讲义).天津:南开大学出版社,1980.
  • 9王厦生 涂生.Vandermonde行列式的推广及其在控制理论中的应用.数学物理学报,1983,4:41-43.

共引文献2

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部