期刊文献+

向量优化中Arrow-Barankin-Blackwell稠密性定理的评注

Arrow-Barankin-Blackwell theorem in vector optimization
原文传递
导出
摘要 真有效点集在Pareto有效点集中的Arrow-Barankin-Blackwell稠密性理论是向量优化理论的组成部分,已被广泛研究并获得了一系列深刻的结果.该文就弱紧凸集和紧凸集概述了正真有效点集在Pareto点集中的稠密性,并就弱紧非凸集介绍了超有效点集在Pareto点集中的稠密性. In this note,we give a survey on the Arrow-Barrankin-Blackwell theorem for both weakly compact convex sets and compact convex sets in topological linear spaces and/or normed spaces.This note also concerns the denseness of the super-efficient point set in the Pareto efficient point set for a weakly compact(not necessarily convex) set.
作者 郑喜印
机构地区 云南大学数学系
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期284-288,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(11061038) 云南省高校科技创新团队项目
关键词 Pareto有效点 正真有效点 超有效点 有界基 Pareto efficient point positive proper efficient point super-efficient point bounded base
  • 相关文献

参考文献20

  • 1ARROW K J, BARANKIN E W, BLACKWELL D. Admissible points of convex sets, contribution to the theory of games [ C ]// KUHN H W,TUCKER A W. New Jersey:Princeton University Press, 1953:87-92.
  • 2BITRAN G R, MAGNANTI T L. The structure of admissible points with respect to cone dominance [ J ]. Journal of Optimization Theory and Applications, 1979,29(4) :573-614.
  • 3BORWEIN J M. The geometry of pareto efficiency over cones, mathematische operationsforshung und statistik [ J ]. Series Opti- mization, 1980( 11 ) :235-248.
  • 4BORWEIN J M,ZHUANG D. Superefficiency in vector optimization[ J ]. Trans Amer Math Soc, 1993,338,105-122.
  • 5FERRO F. General form of the Arrow - Barankin - Blackwell theorem in a normed space and the L[ J ]. J Optim Theory Ap- pl, 1994,79,173-180.
  • 6FU WANTAO(Department of Matehematics,Nanchang University, Nanchang 330047, Jiangxi, China).ON THE THEOREM OF ARROW-BARANKIN-BLACKWELL FOR WEAKIY COMPACT CONVEX SET[J].Chinese Annals of Mathematics,Series B,1994,15(2):173-180. 被引量:1
  • 7傅万涛.关于Arrow-Barankin-Blackwell定理的一点注记[J].系统科学与数学,1994,14(2):146-149. 被引量:5
  • 8HARTLEY R. On cone efficiency, cone convexity, and cone compactness [ J ]. SIAM Journal on Applied Mathematics, 1978, 34,211-222.
  • 9GALLAGHER R J, O A. Two Generalizations of a theorem of arrow, Barankin and Blackwell [ J ]. SIAM Journal on Control and Optimization, 1993,31,247-258.
  • 10JAHN J. A generalization of a theorem of arrow, Barankin and Blackwell [ J ]. SIAM Journal on Control and Optimization, 1988,26,999-1 005.

二级参考文献1

  • 1傅万涛

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部