期刊文献+

基于HMM的数据库异常检测方法 被引量:1

HMM-based Database Intrusion Detection approach
下载PDF
导出
摘要 随着数据库系统在企业的普遍使用,以及数据库的作用日益重要,数据库的安全问题也随之变得更加严峻。探讨了数据库系统的安全问题,阐述了数据库异常检测系统的重要性,详细研究了隐马尔可夫(HMM)模型,介绍了HMM模型的参数估计的方法。运用HMM模型对数据库系统的事件序列进行建模,以数据库系统日志作为训练集,建立正常状态下的用户行为轮廓,并以当前用户事件的最大似然概率与正常用户行为轮廓的偏离程度来检测异常。 With the increasingly important role of the widespread use of database systems in the enterprise, database security issues are becoming more severe. This paper discusses the security issues of database systems, describes the importance of database anomaly detection system, presents a detailed study of the hidden Markov (HMM) model, introduces the method of HMM parameter estimation. Using the database the system log as a training set, this paper use the HMM model "~o model the sequence of events for the database s2stem to establish the contours of the user behavior in the normal state, the deviation degree of current user event maximum likelihood probability from normal user behavior profile is used to detect anomalies.
作者 黄建强
出处 《计算机安全》 2013年第4期40-42,共3页 Network & Computer Security
关键词 数据库安全 异常检测 隐马尔可夫模型 用户轮廓 Database security intrusion detection hidden markov model user profile
  • 相关文献

参考文献5

  • 1Thomer MIGil Massimiliano Polettol Multops : A data2structure for bandwidth tt&ck detection I The 10th USENIX Security of Symposium , Washington , 2001.
  • 2V. Chandola, A. Banerjee, and V. Kumar, Anomaly Detection: A Survey[J]. ACM Computing Surveys. 2009, 41(3).
  • 3王丽娜,董晓梅,郭晓淳,于戈.基于数据挖掘的网络数据库入侵检测系统[J].东北大学学报(自然科学版),2003,24(3):225-228. 被引量:30
  • 4邝祝芳,谭骏珊.KMApriori:一种有效的数据库异常检测方法[J].计算机工程与科学,2008,30(6):18-21. 被引量:4
  • 5Pabiner L E. A Tutorial on Hidden Markov Models and Selected Applications in Speech l,ecognition [ A ] . Proceeding of IEEE , February 1989 ,77 (2) :257286.

二级参考文献21

  • 1邝祝芳,阳国贵,李清.基于隐Markov模型的数据库异常检测技术[J].计算机研究与发展,2006,43(z3):257-261. 被引量:3
  • 2钟勇,秦小麟.数据库入侵检测研究综述[J].计算机科学,2004,31(10):15-18. 被引量:18
  • 3HANJ KAMBERM 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 4Feiertag R, Rho S, Benzinger L,et al. Intrusion detection inter-component adaptive negotiation[J]. Computer Networks, 2000,34(4):605-621.
  • 5Lee W, Stolfo S J. Data Mining approaches for intrusion detection[EB/OL]. http:∥www.cs.columbia.edu/~wenke/, 2000-12-03.
  • 6Manganaris S, Christensen M, Zerkle D, et al. A data mining analysis of RTID alarms[J]. Computer Networks, 2000,34(4):571-577.
  • 7Debar H, Dacier M, Wespi A. Towards a taxonomy of intrusion-detection systems[J]. Computer Networks, 1999,31(8):805-822.
  • 8Spafford E H,Zamboni D. Intrusion detection using autonomous agents[J]. Computer Networks, 2000,34(4):547-570.
  • 9Lee W, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models[A]. Proceedings of the 1999 IEEE Symposium on Security and Privacy[C]. Oakland: IEEE, 1999.120-132.
  • 10Lee W, Stolfo S J, Mok K W. Mining audit data to build intrusion detection models[EB/OL]. http:∥www.cs.columbia.edu/~wenke/, 2001-06-12.

共引文献32

同被引文献9

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部