期刊文献+

双目立体视觉中角点检测的方法研究

Research on Corner Detection Technique for Binocular Stereo Vision
下载PDF
导出
摘要 双目立体视觉是计算机视觉研究中最为活跃的一个分支,是智能机器人科学发展的重要标志。它是由不同位置的2台或者1台摄像机(CCD)经过移动或旋转拍摄同一场景,通过图像获取、摄像机标定、特征提取和匹配,进而通过计算空间点在2幅图像中的视差,获得场景的深度信息。本文在SU-SAN角点检测的基础上,提出了基于图像平均灰度的阈值选取方法,使阈值的选取不再盲目,保证了用SUSAN算法进行角点检测的实用性和适用性。仿真试验表明,用该方法进行特征点的提取,减少了匹配时间,提高了匹配精度,得到了较好的效果。 Binocular stereo vision is one of the most active branches of researching fields of computer vision, it is also the important symbol of the aptitude robots development. It can calculate the disparity in the two images and obtain the scene depth information based on the different locations, vision system composed of two or one CCD cameral or personal comput- er's moving or rotating the same scene shot, through image acquisition, camera calibration, feature extraction and matc- hing, space points. The paper presented selection way based on the average gray scale image on the condition of SUSAN al- gorithm to corner detection, in order to make the threshold^s selection not aimless any more, and also guarantee the practi-cality and applicability when using SUSAN algorithm to corner detection. A large number of experiments' results indicated that it can reduce the time of extraction of feature points and matching, improve the matching accuracy, and obtain good re-sults.
作者 王苏娅
出处 《新技术新工艺》 2013年第4期55-57,共3页 New Technology & New Process
关键词 立体视觉 特征点提取 SUSAN算法 平均灰度 stereo vision, extraction of feature points, SUSAN algorithm, average gray
  • 相关文献

参考文献5

  • 1高文 陈熙霖.计算机视觉[M].北京:清华大学出版社,1999..
  • 2隋婧,金伟其.双目立体视觉技术的实现及其进展[J].电子技术应用,2004,30(10):4-6. 被引量:88
  • 3Clark F O, Habib A, Ming Y. Proceedings of the 2003 IEEE/RSJ Intl[C]. I.as Vegas, USA:Conference on Intelli- gent Robots and Systems,2003.
  • 4Zhong Y D, Zhang H F. Control points based sdemi- dense matching[C]. Melbourne, Australia: The 5th Asian Conference on Computer Vision, 2009.
  • 5Smith S, Brady. SUSAN-a new approach to low level image processing[J]. International Journal of Computer Vision,1997,23(1) :45-78.

二级参考文献6

  • 1Minoru Asada, Takamaro Tanaka. Visual Tracking Of Unknown Moving Object By Adaptive Binocular Visual Servoing.Proceeding of the 1999 IEEE International Conference on Multisensor Fusion and Intelligent Systems;
  • 2Vallerand Steve, Kanbara Masayuki, Yokoya Naokazu. Binocular Vision-Based Augmented Reality System With An Increased Registration Depth Using Dynamic Correction Of Feature Positions. Proceedings. Of the 2003 IEEE,Virtual Reality.March 2003; Vol.22~26,p27
  • 3Kei Okada, Masayuki Inaba. Integration Of Real-Time Binocular Stereo Vision And Whole Body Information For Dynamic Walking Navigation Of Humanoid Robot. IEEE Conference on Multisensor Fusion and Intergration for Intelligent Systems 2003
  • 4Yajun Fang, Ichiro Masaki, and Berthold Horn. Depth-Based Target Segmentation for Intelligent Vehicles: Fusion of Radar and Binocular Stereo. IEEE Transactions On Intelligent Transportation Systems, 2002;3(3)
  • 5Clark F. Olson, Habib Abi-Rached, Ming Ye, Jonathan P.Hendrich. Wide-Baseline Stereo Vision For Mars Rovers.Proceedings Of The 2003 IEEE/RSJ Intl. Conference On Intelligent Robots And Systerms. October 2003
  • 6高庆吉,洪炳熔,阮玉峰.基于异构双目视觉的全自主足球机器人导航[J].哈尔滨工业大学学报,2003,35(9):1029-1032. 被引量:21

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部