期刊文献+

浅表组织超声图像的均衡化处理 被引量:3

Equalization of Superficial Ultrasonic Images
下载PDF
导出
摘要 均衡化算法可有效降低超声图像采样点间的相关性,提高斑点噪声的抑制效果。但根据在体图像获取均衡滤波器参数的计算量大,不利于实时实现。针对浅表超声图像,本研究提出一种效果明显同时避免大量实时计算的均衡化方法。基于射频图像成像模型,分析超声体模回波信号频谱,滤除组织反射函数频谱成分,获得点扩散函数(PSF),构建均衡滤波器,分析其用于浅表组织超声图像的均衡化处理效果。通过超声体模获取参数的均衡滤波器用于浅表超声图像,可以有效降低采样点间的相关性,预处理后的去斑滤波效果相较于直接滤波,信噪比提高约19.2%,图像去斑效果得到提高。对于浅表超声图像,可以通过超声体模预先获取均衡滤波器参数,从而减少去斑过程的计算量,容易实时实现。 Equalization algorithm can effectively reduce the correlation between ultrasonic image samples; improve the performance of de-speckling methods. But acquiring equalization filter parameters based on in vivo images requires a large amount of calculation which is not conducive to real-time processing. Aiming at superficial ultrasonic images, this paper gives an effective equalization method that avoids lots of real-time calculation. Based on the ultrasonic RF imaging formation model, this paper analyzed the spectrum of ultrasonic phantom echo signals, filtered the spectral component of the tissue reflectivity function, obtained the point- spread function and constructed the equalization filter to analyze its effect for superficial images. With the parameters acquired from the phantom the equalization filter used for superficial ultrasonic images can reduce the correlation. Compared with direct de-speckling methods, the speckle SNR of preprocessed de-speckling methods has been improved about 19.2%, the performance of de-speckling methods gets improved. For superficial ultrasonic images, parameters of equalization filter can be acquired through ultrasound phantom in advance, it can reduce the calculation of de-speckling process and easy to realize real-time processing.
作者 李金冬 郑政
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2013年第2期191-196,共6页 Chinese Journal of Biomedical Engineering
关键词 超声成像 斑点噪声 均衡化 点扩散函数 ultrasound imaging speckle noise equalization point spread function
  • 相关文献

参考文献8

  • 1李敏,张自友,卢林菊.基于形态Haar小波的SAR图像斑点噪声抑制方法[J].计算机应用,2012,32(3):746-748. 被引量:2
  • 2Iraca D, Landini L, Verrazzani L. Power spectrum equalization for ultrasonic image restoration [ J ]. IEEE Trans Uhrason Ferroelect Freq Contr, 1989,32 : 216 - 222.
  • 3Michailovich O, Tannenbaum A. Despeckling of medical ultrasound images [ J ]. IEEE Trans Ultrason Ferroeleet Freq Contr, 2006,53 ( 1 ) : 64 -78.
  • 4Michailovich O, Adam D. A novel approach to the 2 - D blind in medical ultrasound [ J]. IEEE Trans Med Imag, 2005,24 (1) : 86 -94.
  • 5Georgiou G, Cohen F. Statistical characterization of diffuse scattering in ultrasound images [ J ]. IEEE Ultrasoun Ferroelect. 1998.45,57-64.
  • 6于黎耘,白净,杨福生.超声回波信号的解卷[J].国外医学(生物医学工程分册),1993,16(3):125-133. 被引量:3
  • 7Jensen JA, Leeman S. Nonparametric estimation of ultrasound pulses [J]. IEEE Trans Biomed Eng, 1994, 41:929 -936.
  • 8Michailovich O, Adam D. Robust estimation of ultrasound pulses using outlier-resistant de-nolsing [ J ]. IEEE Trans Med Imag, 2003,22:368 -392.

二级参考文献16

  • 1贾承丽,匡纲要.SAR图像去斑方法[J].中国图象图形学报(A辑),2005,10(2):135-141. 被引量:24
  • 2陈建祥,贾承丽,匡纲要.改进的基于结构检测的SAR图像去斑方法[J].计算机仿真,2005,22(9):25-28. 被引量:1
  • 3XIAO JINGFENG,LI JING,MOODY A.A detail-preserving and flexible adaptive filter for speckle suppression in SAR imagery[J].International Journal of Remote Sensing,2003,24(12):2451-2465.
  • 4XIE H,PIERCE L E,ULABY F T.Statistical properties of logarithmically transformed speckle[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(3):721-727.
  • 5TOUZI R.A review of speckle filtering in the context of estimation theory[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2392-2404.
  • 6ARGENTI F,ALPARONE L.Speckle removal from SAR images in the undecimated wavelet domain[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2363-2374.
  • 7GNANADURAI D,SADAIVAM V.Undecimated wavelet based speckle reduction for SAR image[J].Pattern Recognition Letters,2005,26(6):793-800.
  • 8TSAKALIDES A P,BEZERIANOS A.SAR image denoising via Bayesian wavelet shrinkage based on heavy tailed modeling[J].IEEE Transactions on Geoscience and Remote Sensing, 2003,41(8):1773-1784.
  • 9SENDURE L,SELESNICK I W.Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J].Transactions on Signal Proccooing,2002,50(11):2744-2756.
  • 10GUPTA K K,GUPTA R.Despeckle and geographical feature ex-traction in SAR images by wavelet transform[J].ISPRS Journal ofPhotogrammetry & Remote Sensing,2007,62(10):473-484.

共引文献3

同被引文献13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部