期刊文献+

基于数字图像的水泥混凝土路面嵌缝料损坏识别 被引量:5

Recognition on Joint Sealant Rupture of Cement Concrete Pavement Based on Digital Image
下载PDF
导出
摘要 针对目前水泥混凝土路面嵌缝料损坏评价方法的不足,提出了1种基于数字图像的水泥混凝土路面嵌缝料损坏识别方法.该方法根据水泥混凝土路面接缝图像特征对接缝进行定位,并根据嵌缝料损坏图像特征对嵌缝料损坏进行分类.接缝定位主要有2个步骤,一是基于灰度投影的粗定位,二是在粗定位的基础上提取接缝附近图像,利用灰度投影和边缘投影进行精定位.嵌缝料损坏分类过程中,提取了空隙相对宽度、空隙相对位置、空隙外接矩形相对宽度和空隙投影相对值4个特征,并由BP神经网络和线性直接判别式法构成分类器.试验表明,上述方法对水泥混凝土路面嵌缝料损坏识别正确率达到94%. To overcome the shortcomings of traditional methods for joint sealant rupture evaluation, a new method for recognition joint sealant rupture of cement concrete paveoaent based on digital image was pro posed. Based on the digital image processing in accordance with the joint feature,the slab joints can be po sitioned. The joint sealant rupture can be classified by pattern recognition according to the feature of ima ges of joint sealant rupture. Joint positioning was divided into two main steps:approximate location based on the gray projection feature of who/e image and accurate location based on the character of gray projec tion and edge projection around the joints image. In the process of pattern recognition, the features inclu ding the relative width of joint sealant interspace, the relative location of joint sealant interspace, the rela tive width of outer rectangle of joint sealant interspace and the relative projection value of joint sealant in terspace were extracted from the digital images. BP network and linear discriminant were adopted for the classification. The experimental results show that accuracy of recognition on joint sealant rupture of cement concrete pavement reaches 94%.
出处 《建筑材料学报》 EI CAS CSCD 北大核心 2013年第2期349-353,359,共6页 Journal of Building Materials
基金 国家自然科学基金资助项目(51208130) 西部交通建设科技项目(2007 318 223 01-9)
关键词 水泥混凝土路面 嵌缝料 接缝定位 模式识别 数字图像 cement concrete pavement joint sealant joint positioning pattern recognition digital image
  • 相关文献

参考文献8

  • 1JTG H20-2007,公路技术状况评定标准[S].
  • 2SIMPSON A L,RAUHUT J B,JORDAHL P R,et al. Early a-nalysis of LTPP general pavement studies data (Volume E ):Sensitivity analyses for selected pavement distresses (ReportSHRP-P-393)[R], Washington, D C:National Research Coun-cil,1994.
  • 3YU H T, SMITH K D, DARTER M I,et al. Performance ofconcrete pavements( Volume ffi ) : Improving concrete pavementperformance(FHWA~RD-95-lll) [R]. Washington, D C: Fed-eral Highway Administration, 1997.
  • 4HOERNER T E, DARTER M I, KHAZANOVICH L,et al.Improved prediction model for PCC pavement performance-re-lated specifications ( Final report) ( FHWA-RD -00-130 ) [R].Washington, D C:Federal Highway Administration,2000.
  • 5HOERNER T E,TARR S M, DARTER M I,et al. Guide todeveloping performance-related specifications for PCC pave-ments( Volume ):Appendixes C through F( FHWA-RD-98-171) [R]. Washington, D C: Federal Highway Administra-tion, 1999.
  • 6PESHKIN D G, HOERNER T E,ZIMMERMAN K A. Opti-mal timing of pavement preventive maintenance treatment ap-plications(NCHRP report 523)[R], Washington, D C: Trans-portation Research Board,2004.
  • 7KIRSCH R. A computer determination of the constituentstructure of biological images[J]. Computers in Biomedical Re-search, 1971(4) : 315-328.
  • 8PUN T. A new method for gray-level picture thresholding u-sing the entropy of histogram [J]. Signal Processing, 1980,2(3):223-237.

共引文献180

同被引文献42

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部