期刊文献+

Isobar TTL半坚强内固定系统与USS坚强内固定系统的三维有限元分析比较 被引量:6

Finite element analysis of Isobar TTL techniques and universal spinal system for lumbar spine: a comparison
下载PDF
导出
摘要 目的建立USS坚强内固定系统、Isobar TTL半坚强内固定系统的腰椎三维有限元模型,对比两种模型的力学分布特点,探索动态内固定系统对腰椎生物力学的影响,为动态内固定系统临床应用提供理论依据。方法依据1名正常男性志愿者中立位下螺旋CT扫描资料,利用Mimics 11.1、Geomagic studio 10.0、HyperMesh 10.0和Abaqus 6.8等软件构建L3~S1三维有限元模型,重建Isobar TTL和USS术后模型,对模型施加150N预载荷及10Nm力矩,分别记录不同工况下模型的椎间活动度、邻段椎间盘应力及内固定应力分布和应力峰值。结果成功建立了解剖结构精细的L3~S1三维有限元模型及Isobar TTL和USS术后模型。Isobar TTL和USS模型应力主要分布在螺钉钉身,USS模型应力峰值大于Isobar TTL模型,主要集中在螺钉中部,但均不超过100MPa;Isobar TTL模型椎间稳定性与正常模型无明显差异,而USS模型的运动范围明显下降,在屈伸工况下最为明显;Isobar TTL模型邻段L3/L4椎间盘应力在前屈、后伸、侧曲、旋转工况下分别增加了6.2%、9.7%、3.6%、3.8%,而USS模型分别增加了8.5%、13.5%、4.3%、4.8%。结论 Isobar TTL系统能有效维持术后腰椎活动度,减少应力遮挡,理论上可以减缓邻近节段的退变。 Objective To establish finite element models of universal spinal system (USS) and Isobar TTL on L3-S1 with fine anatomical structures and to compare the characteristics of stress distribution of the two models, so as to explore the influence of dynamic internal fixation system (DIFS) on the lumbar biomechanics, providing a theoretical basis for clinical application of DIFS. Methods The lumbar spine geometries were determined using the CT images of a 26-year-old healthy man.The finite dement models of USS and Isobar TTL were constructed by using package Mimics 11. 1, Geomagic studio 10. 0, HyperMesh 10.0 and Abaqus 6.8. The ranges of motion, intervertebral disc stress of adjacent segments, and stress distribution and peak of internal fixation were recorded when the models were subjected to 150 N preload and 10 Nm moment of forces under different conditions: flexion, extension, lateral bending and axial rotation. Results We have successfully constructed the definite element model of L3-S1 with fine anatomical structures and the postoperation models of Isobar TTL and USS. The stress of Isobar TTL and USS model was mainly distributed on the screws, with the maximal stress on USS model being higher than that on the Isobar TTL model. The screws had high stress at the middle part, with the maximal stress being all less than 100 MPa under different conditions. The intervertebral stability of Isobar TTL model was not greatly different from that of normal models however, the overall motion of USS model was obviously deceased, especially when at flexion and extension condition. For Isobar TTL model, the increases of intervertebral disc stress of adjacent segments of L3/L4 for forward bending,backward extension, lateral bending and rotation were 6.2%, 9.7%, 3.6%, and 3.8%, respectively, and the numbers for USS model were 8.5%, 13.5%, 4.3% and 4.8 %, respectively. Conclusion The maximal stress of Isobar TTL system can effectively maintain the range of motion of the lumbar spine, reduce the resistance of stress, and delay adjacent segment degeneration in theory.
出处 《第二军医大学学报》 CAS CSCD 北大核心 2013年第4期416-420,共5页 Academic Journal of Second Military Medical University
关键词 脊柱 动态内固定 脊柱融合术 有限元分析 spine dynamic internal fixation spinal fusion finite element analysis
  • 相关文献

参考文献13

  • 1Okuda S,Miyauchi A, Oda T, Haku T, Yamamoto T,Iwasaki M. Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients[J] J Neurosurg Spine, 2006,4 : 304-309.
  • 2Galbusera F, Bellini C M, Zweig T, Ferguson S, Raimondi M T, Lamartina C, et al. Design concepts in lumbar total disc arthroplasty[J] Eur Spine J, 2008, 17:1635-1650.
  • 3Kanayama M, Hashimoto T, Shigenobu K, Togawa D, Oha F. A minimum 10-year follow-up of posterior dy- namic stabilization using Graf artificial ligament [J]. Spine(Phila Pa 1976), 2007,32 : 1992-1997.
  • 4Senegas J. Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar seg- ments: the Wallis system[J]. Eur Spine J, 2002, 11 (Suppl 2) :S164-S169.
  • 5Lee J, Hida K, Seki T, Iwasaki Y, Minoru A. An inter- spinous process distractor(X STOP) for lumbar spinal stenosis in elderly patients., preliminary experiences in 10 consecutive cases[J]. J Spinal Disord Tech, 2004, 17:72-78.
  • 6Villarejo F,Carceller F,de la Riva A G,Budke M. Ex- perience with coflex interspinous implant[J].Acta Neurochir Suppl,2011,108 : 171- 175.
  • 7温永福,朱立新,闵少雄,刘成龙,曹延林,张力,刘阳.ISOBAR TTL半坚强动态内固定与坚强内固定治疗腰椎退行性疾病临床疗效的对比分析[J].中国矫形外科杂志,2011,19(5):373-377. 被引量:13
  • 8Yamamoto I,Panjabi M M,Crisco T,Oxland T. Three- dimensional movements of the whole lumbar spine and lumbosacral joint[J]. Spine, 1989,14 : 1256-1260.
  • 9Rohlmann A, Zander T, Rao M, Bergmnn G. Realistic loading conditions for upper body bending [J]. J Bio- mechan, 2009,42 : 884-890.
  • 10Demoulin C, Distr6e V, Tomasella M, Crielaard J M, Vanderthommen M. Lumbar functional instability: a critical appraisal of the literature[J] Ann Readapt Med Phys, 2007,50 : 677-684.

二级参考文献19

  • 1侯树勋,李明全,白巍,商卫林,吴闻文,王韬,史亚民,罗卓荆.腰椎髓核摘除术远期疗效评价[J].中华骨科杂志,2003,23(9):513-516. 被引量:214
  • 2Fritzell P, Hagg O, Nordwall A. Complications in lumbar fusion surgery for chronic low back pain: comparison of three surgical techniques used in a prospective randomized study. A report from the Swedish Lumbar Spine Study Group[ J]. Eur Spine J, 2003,12:178 - 189.
  • 3Ghiselli G, Wang JC, Hsu WK,et od. L5S1 segment survivorship and clinical outcome analysis after L4,5 isolated fusion[ J ]. Spine, 2003, 28 : 1275 - 1280.
  • 4Highsmith JM, Tumialan LM, Rodts GE Jr. Flexible rods and the case for dynamic stabilization [ J ]. Neurosurg Focus, 2007,22 : 11.
  • 5Nagata H, Schendel M J, Transfeldt EE, et al. The effects of immobilization of long segments of the spine on the adjacent and distal facet force and lumbosacral motion[ J]. Spine, 1993, 18:2471 -2479.
  • 6Katsuura A, Hukuda S, Saruhashi Y, et al. Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels [ J ]. Eur Spine J, 2001, 10:320 -324.
  • 7Gelalis ID, Kang JD. Thoracic and lumbar fusions for degenerative disorders: rationale for selecting the appropriate fusion techniques [ J]. Orthop Clin North Am, 1998, 29:829 -842.
  • 8Hayashi T, Arizono T, Fujimoto T, et al. Degenerative change in the adjacent segments to the fusion site after posterolateral lumbar fusion with pedicle screw instrumentation - a minimum 4 - year follow - up [ J]. Fukuoka Igaku Zasshi, 2008, 99:107 - 113.
  • 9Schaeren S, Broger I, Jeanneret B. Minimum four - year follow - up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization [ J ]. Spine, 2008, 33 : 636 - 642.
  • 10Dickemmn RD, Reynolds AS, Zigler J. et al. Adjacen! - segment degeneration[J ]. J Neurosurg Spine,2009,2:177.

共引文献51

同被引文献101

  • 1邹德威,杨惠林,金大地.脊柱功能重建外科学[M].北京:人民军医出版社,2008:534-544.
  • 2Ekman P, Moller H, Shalabi A, et al. A prospective randomised study on the long-term effect of lumbar fusion on adjacent disc degeneration [ J 1. European Spine Journal, 2009, 18 : 1175 - 1186.
  • 3Lindsey DP, Swanson KE, Fuchs P, et al. The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine[ J]. Spine ( Phila Pa 1976) , 2003, 28 :2192 - 2197.
  • 4Wilke H-J, Drurnm J, Haussler K, et al. Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure [ J ]. European Spine Journal, 2008, 17: 1049 - 1056.
  • 5Sangiorgio SN, Sheikh H, Borkowski SL, et al. Comparison of throe posterior dynamic stabilization devices[ J]. Spine (Phila Pa 1976), 2011, 36:E1251 -E1258.
  • 6Ploumis A, Christodoulou P, Kapoutsis D, et aL Surgical treatment of lumbar spinal stenosis with microdecomprossion and interspinous distraction device insertion. A case series [ J ]. Journal of Orthopaedic Surgery and Research, 2012, 7:35.
  • 7Wan Z, Wang S, Kozanek M, et al. The effect of the X-Stop implantation on intervertebral foramen, segmental spinal canal length and disc space in elderly patients with lumbar spinal stenosis[ J]. European Spine Journal, 2012, 21:400 -410.
  • 8Richards JC, Majumdar S, Lindsey DP, et al. The treatment mechanism of an interspinous process implant for lumbar neurogenic intermittent elaudication [ J ]. Spine (Phila Pa 1976 ), 2005, 30:744 - 749.
  • 9Siddiqui M, Karadimas E, Nicol M, et al. Influence of X Stop on neural foramina and spinal canal area in spinal stenosis [J]. Spine (Phila Pa 1976) , 2006, 31:2958 -2962.
  • 10Lu YM, Hutton WC, Gharpuray VM. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model[ J]. Spine (Phila Pa 1976) , 1996, 21:2570 - 2579.

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部