摘要
通过调查发现,E-learning支持系统无法有效地向学习者个性化地推荐学习资源。为了进一步提高推荐系统的性能,本文尝试将协同过滤推荐技术引入学习资源的个性化推荐研究中。协同过滤推荐技术是一种应用最为广泛的个性化推荐技术,然而其面临着冷启动、数据稀疏性问题、规模可扩展性等问题。本文通过介绍协同过滤推荐技术的工作原理、实现方法及存在问题,提出了一个优化的基于协同过滤技术的学习资源个性化推荐系统的理论模型,重点讨论了隐式评分机制和算法的实现,以提升推荐系统的实时响应和推荐精度。
出处
《计算机光盘软件与应用》
2013年第3期56-58,共3页
Computer CD Software and Application