期刊文献+

基于混合物分数和反应进度变量的二维火焰面模型 被引量:2

Two-Dimensional Flamelet Model Based on Mixture Fraction and Progress Variable
下载PDF
导出
摘要 基于混合物分数Z和反应进度变量Yc的二维层流火焰面模型,数值研究了混合物分数标量耗散率、反应进度标量耗散率等对Z-Yc区域边界以及部分预混火焰结构的影响.结果表明,混合物分数标量耗散率对火焰结构有较大的影响,在混合物分数标量耗散率较小时产生了双火焰的结构;而反应进度标量耗散率对当量混合附近的结果有明显的影响,尤其是当混合物分数标量耗散率较小时;在稳定燃烧情况下,稳态一维火焰面模型只是二维火焰面模型的一个边界,表明二维火焰面模型方程的解给出的化学热力学参数表包含更多的信息,可用于多机制共存的火焰数值模拟. Partially premixed laminar flame structure was numerically studied using two-dimensional(2D)steady laminar flamelet model based on mixture fraction Z and progress variable Y~. The effects of mixture fraction scalar dissipation rates and progress variable scalar dissipation rates of the range of the Z - Y~ boundary and the structure of partially premixed flames were studied. Results showed that the variation of mixture fraction dissipation rates has an important effect on the range of Z - Y~ and a double-flame structure is captured at low mixture fraction scalar dissipa- tion rate; reaction progress scalar dissipation rate also plays an important role in the vicinity of the stoichiometric region, especially at low mixture fraction scalar dissipation rate; 1D steady laminar flamelet model is only one boundary of 2D flamelet model, which demonstrates that 2D flamelet model can give more information and is appli- cable to the numerical simulation of hybrid regime combustion.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2013年第2期181-186,共6页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(51046010 51176178)
关键词 部分预混 二维火焰面 标量耗散率 火焰结构 partially premixed 2D flamelet scalar dissipation rate flame structure
  • 相关文献

参考文献15

  • 1Peters N. Laminar diffusion flamelet models in non- premixed turbulent combustion[J]. Progress in Energy and Combustion Science, 1984, 10(3): 319-339.
  • 2Pitsch H, Chen M, Peters N. Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames [C] Twenty-Seventh Symposium (International) on Combustion. Pittsburgh: Combustion Institute, 1998: 1057-1064.
  • 3Pierce C D, Moin P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73-97.
  • 4Gicquel O, Darabiha N, Thevenin D. Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion[J]. Proceedings of the Combustion Institute, 2000, 28(2): 1901-1908.
  • 5Van Oijen J, De Goey L. Modelling ofpremixed laminar flames using flamelet-generated manifolds [J]. Combust- ion Science and Technology, 2000, 161 (1) : 113-137.
  • 6Maas U, Pope S B. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space[J]. Combustion and Flame, 1992, 88(3/4) : 239-264.
  • 7Fiorina B, Gicquel O, Vervisch V, et al. Approximat- ing the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelettabulation[J]. Combustion and Flame, 2005, 140 (3) 147-160.
  • 8Nguyen P D, Vervisch L, Subramanian V, Multidimensional flamelet-generated manifolds partially premixed combustion[J]. Combustion et al. for andFlame, 2010, 157(1): 43-61.
  • 9Peters N. Turbulent Combustion [M]. England : Cambridge University Press, 2000.
  • 10武文,黄威,赵平辉,叶桃红.基于RANS求解的火焰面/反应进度变量湍流燃烧模型研究[J].中国科学技术大学学报,2010,40(10):1016-1022. 被引量:8

二级参考文献17

  • 1王海峰,陈义良,刘明侯.湍流扩散燃烧的数值研究—PDF方法和火焰面模型的性能比较[J].工程热物理学报,2005,26(z1):241-244. 被引量:9
  • 2董刚,王海峰,陈义良.用火焰面模型模拟甲烷/空气湍流射流扩散火焰[J].力学学报,2005,37(1):73-79. 被引量:10
  • 3Peters N. Laminar flamelet concepts in turbulent combustion [J]. Symposium ( International ) on Combustion, 1988,21:1 231-1 250.
  • 4Pierce C D, Moin P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73-97.
  • 5Ihme M, Pitsch H. Prediction of extinction and reignition in nonpremixcd turbulent flames using a flamelet/progress variable model: 1. A priori study and presumed PDF closure [J]. Combustion and Flame, 2008,155: 70-89.
  • 6lhme M, Pitsch H. Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 2. Application in IrES of Sandia flames D and E[J]. Combustion and Flame, 2008,155: 90-107.
  • 7Ihme M, Pitsch H, Bodony D. Radiation of noise in turbulent non-premixed flames[J]. Proceedings of the Combustion Institute, 2009, 32: 1 545-1 553.
  • 8OpenFOAM[CP/OL]. [2009-09-01]. http://www. openfoam. com/.
  • 9Bilger R W, Starner S H, Kee R J. On reduced mechanisms for methane air combustion in nonpremixed flames[J]. Combustion and Flame, 1990, 80(2) : 135-149.
  • 10Jones W P. Whitelaw J H. Calculation methods for reacting turbulent flows: A review [J]. Combustion and Flame, 1982, 48: 1-26.

共引文献7

同被引文献19

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部