期刊文献+

输入受限的轧机液压伺服系统多模型切换控制 被引量:8

Multi-model switching control for rolling mill hydraulic servo system with input constraints
下载PDF
导出
摘要 针对轧机液压伺服系统随工况变化所引起的弹性刚度系数及外负载力跳变问题,在输入受限的情况下,提出了一种具有L2增益的鲁棒抗饱和多模型切换控制策略。首先,建立了轧机液压伺服位置系统在不同工况下的多模型集;其次,应用共同Lyapunov函数及稳定性理论证明了输入受限切换系统具有L2增益稳定性,并采用LMI方法设计了抗饱和状态反馈控制器。基于切换易实现原则,根据液压缸压力的变化作为各子控制器切换的依据。仿真及实验研究结果验证了本文所设计控制策略的有效性。 Aiming at the jumping problems of the elastic stiffness coefficient and external load force caused by work- ing condition change of the rolling mill hydraulic servo system with input constrains, a robust anti-saturation multi- model switching control strategy with L2 gain is presented. Firstly, a multiple model set for the rolling mill hydraulic servo system is established under different working conditions. Secondly, common Lyapunov function and stability the- ory are applied to prove that the switching system with input constrains has L2 gain stability. Then the anti-saturation state feedback controller is designed using LMI approach. The changing of hydraulic cylinder pressure is taken as the switching control criteria of the sub-model controller based on the principle of easy to be realized switching. The sim- ulation and experiment study results demonstrate the validity of the designed control strategy.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第4期881-888,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61074099)资助项目
关键词 输入受限 轧机 液压伺服系统 多模型切换 L2增益 input constraint rolling mill hydraulic servo system multi-model switching L2 gain
  • 相关文献

参考文献8

二级参考文献79

  • 1刁翔,李奇.一类比值系统的约束广义预测控制[J].仪器仪表学报,2006,27(z1):533-535. 被引量:1
  • 2李少远,席裕庚.具有模糊约束的广义预测控制[J].仪器仪表学报,2001,22(2):158-161. 被引量:7
  • 3赵敏,李少远.非线性系统双模鲁棒预测控制:不变集切换方法[J].系统科学与数学,2007,27(3):365-377. 被引量:7
  • 4李奇安,褚健.对角CARIMA模型多变量广义预测控制改进算法[J].控制理论与应用,2007,24(3):423-426. 被引量:12
  • 5NOMIKOS P, MACGREGOR J F. Multivariate SPC charts for monitoring batch process[ J]. Technometrics, 1995,37:41-59.
  • 6NOMIKOS P, MACGREGOR J F. Monitoring batch processes using multiway principal component analysis [J]. AIChE J. , 1994,40:1361-1375.
  • 7KANO M, TANAKA S, HASEBE S, et al. Monitoring independent components for fault detection [ J ]. AIChE J., 2003,49:969-976.
  • 8LEE J M, YOO C K, LEE I B. Statistical process monitoring with independent component analysis [ J ]. J. Process Control, 2004, 14:467-485.
  • 9YOO C K, LEE J M, VANROLLEGHEM P A, et al. On-line monitoring of batch process using multiway independent component analysis [ J ]. Chemometrics and In- telligent Laboratory Systems, April, 2004, 71 ( 1 ) : 151-163.
  • 10GE Z Q, SONG Z H. Online batch process monitoring based on multi-model ICA-PCA method [ C ]. The world congress on intelligent control and automation, Chongqing, China, 2008.

共引文献57

同被引文献48

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部