期刊文献+

融合语义相似度的商务情报链接分析算法研究 被引量:3

Research on Business Intelligence Link Analysis Algorithm Combining Semantic Similarity
原文传递
导出
摘要 针对传统链接分析算法存在的链接丢失问题和语义异构问题,设计基于语义相似度的商务情报链接分析算法。该算法综合应用锚链文本和锚链结构信息解决链接丢失问题,应用领域本体提供语义知识解决语义异构问题。实验结果表明,该算法能够显著提高商务情报分析结果的准确性。 A business intelligence link analysis algorithm based on semantic similarity is designed for the problem of link lost and semantic heterogeneity in the traditional link analysis algorithm. The algorithm exploits anchor chain text and structure synthetically to solve link lost, uses semantic knowledge presented by domain Ontology to solve semantic hetero- geneity. The experiment results show that the model and the algorithm achieve a good expected effect and can raise the accuracy and efficiency of business intelligence analysis.
作者 何超 张玉峰
出处 《现代图书情报技术》 CSSCI 北大核心 2013年第3期27-32,共6页 New Technology of Library and Information Service
基金 教育部博士研究生学术新人奖基金项目"基于数据挖掘的商务情报分析方法研究"(项目编号:5052012104001) 国家自然科学基金项目"企业竞争情报智能分析模型与方法研究"(项目编号:71073121)的研究成果之一
关键词 商务情报 语义相似度 链接分析 Business intelligence Semantic similarity Link analysis
  • 相关文献

参考文献12

  • 1Getoor L. Link Mining: A New Data Mining Challenge[J]. ACM SIGKDD Explxrations Newsletter, 2003, 5 ( 1 ) : 84 - 89.
  • 2Zhang X, Zhao C F, Wang P, et al. Mining Link Patterns in Linked Data[ C ]. In : Proceedings of WAIM. 2012 : 83 - 94.
  • 3ThelwallM.链接分析:信息科学的研究方法[M].孙建军,李江,张煦译.南京:东南大学出版社,2009:3-7.
  • 4Kleinberg J M. Authoritative Sources in a Hyperlinked Environment [ C ]. In: Proceedings of the 9th Annual ACM - SIAM Symposium on Discrete Algorithms( SODA ' 98 ). 1998 : 668 - 677.
  • 5Brin S, Page L. The Anatomy of a Large - scale Hypertextual Web Search Engine[ J]. Computer Networks artd ISDN Systems, 1998, 30(1) : 107 -117.
  • 6Stattner E, Gollard M. MAX - FLMin: An Approach for Mining Maximal Frequent Links and Generating Semantical Structures from Social Networks [ C ]. In: Proceedings of the 23rd International Conference on DEXA, Vienna, Austria. 2012:4.68 -4-83.
  • 7马慧芳,史忠植.一种高效稳定的链接分析算法[J].计算机应用研究,2011,28(2):488-491. 被引量:2
  • 8郑庆华,刘均,田锋,等.Web知识挖掘:理论、方法与应用[M].北京:科学出版社,2010:114-116.
  • 9张玉峰,周磊,王志芳,何超.领域本体构建与可视化展示研究[J].情报理论与实践,2012,35(10):95-98. 被引量:11
  • 10张乃洲,李石君,余伟,张卓.使用联合链接相似度评估爬取Web资源[J].计算机学报,2010,33(12):2267-2280. 被引量:6

二级参考文献34

  • 1牟冬梅,范轶.数字图书馆领域本体的构建与推理——以医学领域本体为例[J].图书情报工作,2007,51(8):26-30. 被引量:12
  • 2GETOOR L, DIEHL C P. Link mining: a survey[J].ACM SIGKDD Explorations Newsletter,2005,7(2):2-12.
  • 3BRIN S, PAGE L. The anatomy of a large-scale hypertextual Web search engine[J].Computer Networks and ISDN Systems,1998,33(1-7):107-117.
  • 4KLEINBERG J. Authoritative sources in a hyperlinked environment[J].Journal of the ACM,1999,46(5):604-632.
  • 5NG A Y, ZHENG A X, JORDAN M I. Link analysis, eigenvectors and stability[C]//Proc of the 17th International Joint Conference on Artificial Intelligence.2001:903-910.
  • 6CHAKRABARTI S, DOM B, GIBSON D,et al. Automatic resource list compilation by analyzing hyperlink structure and associated text[C]//Proc of the 7th International World Wide Web Conference.1998:65-74.
  • 7COHN D, CHANG H. Learning to probabilistically identify authoritative documents[C]//Proc of the 7th International Conference on Machine Learning.2000:167-174.
  • 8HOFMANN T. Unsupervised learning by probabilistic latent semantic analysis[J].Machine Learning, 2001,42(1):177-196.
  • 9DING C, HE X, HUSBANDS P, et al. PageRank, HITS and a unified framework for link analysis[C]//Proc of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.2002:353-354.
  • 10RICHARDSON M, DOMINGOS P. The intelligent surfer: probabilistic combination of link and content information in PageRank[C]//Proc of Advances in Neural Information Processing Systems. Cambridge,MA:MIT Press,2002:1441-1448.

共引文献19

同被引文献101

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部