期刊文献+

下料问题与运输问题联合优化建模 被引量:4

Cutting Stock Problem and Transportation Problem Collaboration Optimization Modeling
原文传递
导出
摘要 本文研究了考虑子材运输的标准一维下料问题。建立了由生产商负责运输时,标准一维下料与运输协调优化整数规划模型,最小化母材使用成本,子材库存成本及子材运输成本。采用拉格朗日松弛技术对有关约束进行松弛和模型分解,设计基于序列规则和FFD规则的混合启发式算法求解模型。该算法由两部分组成,分别用于求解标准一维下料子问题和卖方运输子问题。通过随机产生的1800个算例,验证模型合理性与算法的有效性。与基于列生成法的两阶段算法解进行比较,平均总成本降低了17.57%,表明集成算法优于两阶段算法。 In this paper,a standard one-dimensional cutting stock problem(S1-CSP) considering items transportation problem(ITP) is studied.It is assumed that the manufacturer undertakes products transportation.A coordination optimization model of standard one-dimensional cutting stock problem and items transportation is formulated.The model’s objective is to minimize total costs of the stock,items inventory and transportation.Lagrangian relaxation approach is employed to relax a certain type of constraint.A hybrid heuristic method called Lagrangian-based cutting and transportation heuristic based on the methods of column generation,sequential procedure,FFD and subgradient is developed.It consists of two sub-algorithms,one is for S1D-CSP,the other is for ITP.Finally,more than 1800 randomly generated instances have been solved by using the proposed method.The calculation results demonstrate the validity of the proposed model and the corresponding solving method.Compared with two-stage heuristic based on column generation,the hybrid heuristic algorithm reduces cost by 17.57% on average,which suggests that integrated algorithm is superior to two-stage algorithm.
出处 《中国管理科学》 CSSCI 北大核心 2013年第2期91-97,共7页 Chinese Journal of Management Science
基金 国家自然科学基金重点资助项目(71131002) 国家自然科学基金资助项目(70801024 71171072 71001032)
关键词 下料 运输 排序 拉格朗日松弛 模式 cutting stock transportation sequencing Lagrangian relaxation patterns
  • 相关文献

参考文献18

  • 1贾志欣.排样问题的研究现状与趋势[J].计算机辅助设计与图形学学报,2004,16(7):890-897. 被引量:44
  • 2阎春平,宋天峰,刘飞.面向可加工性的复杂约束状态下一维优化下料[J].计算机集成制造系统,2010,16(1):195-201. 被引量:15
  • 3尹震飚,阎春平,刘飞,曹智慧.基于零件相似性特征的大规模下料分组优化方法[J].计算机辅助设计与图形学学报,2007,19(11):1442-1446. 被引量:9
  • 4Yanasse H H, Senne E L stacks problem: a review F. The minimization of open of some properties and their use in pre-processing operations[J]. European Journal of Operational Research, 2010, 203: 559-567.
  • 5Yanasse H H, Lamosa D M. An integrated cutting stock and sequencing problem[J]. European Journal of Operational Research, 2007, 183 : 1353- 1370.
  • 6Chandra P, Fisher M L. Coordination of production and distribution planning [J]. European Journal of Opera- tional Research, 1994, 72:503-517.
  • 7Ertogral K. Multi-item single source ordering problem with transportation cost: Lagrangian decomposition ap- proaeh[J]. European Journal of Operational Research, 2008, 191: 156-165.
  • 8Chan F T S, Chung S H, Wadhwa S A. hybrid genetic algorithm for production and distribution[J]. Omega, 2005, 33: 345-355.
  • 9Gen M, Syarif A. Hybrid genetic algorithm for multi- time period production/distribution planning[J]. Com- puters & Industrial Engineering, 2005, 48: 799-809.
  • 10Qu W W, Bookbinder J H, Iyogun P. An integrated inventory-transportation system with modified periodic policy for multiple products [J]. European Journal of Operational Research, 1999, 115: 254-269.

二级参考文献131

共引文献60

同被引文献48

  • 1张潜,高立群,刘雪梅,胡祥培.定位-运输路线安排问题的两阶段启发式算法[J].控制与决策,2004,19(7):773-777. 被引量:44
  • 2谢凡荣.需求区间型运输问题的求解算法[J].运筹与管理,2005,14(1):23-27. 被引量:8
  • 3代西武,李美娥.线材合理下料的数学模型[J].北京建筑工程学院学报,2005,21(2):61-62. 被引量:3
  • 4陈长冰.料仓流型及改善贮料流动性分析[J].水泥技术,2006(2):38-40. 被引量:5
  • 5清华大学《运筹学》教材编写组.运筹学[M].北京:清华大学出版社.2005.
  • 6林耘.谈运输问题“悖论”产生的条件.运筹学杂志,1984,3(1):79-80.
  • 7Hitchcock F L.The distribution of a product from several sources to numerous locations[J].Journal of Mathematical Physics,1941,20:224-230.
  • 8Haley K B.New methods in mathematical programming-The solid transportation problem[J].Operations Research,1962,10:448-463.
  • 9Ojha A,Das B,Mondal S,et al.A solid transportation problem for an item with fixed charge,vehicle cost and price discounted varying charge using genetic algorithm[J].Applied Soft Computing,2010,10:100-110.
  • 10Tao Z M,Xu J P.A class of rough multiple objective programming and its application to solid transportation problem[J].Information Sciences,2012,188:215-235.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部