期刊文献+

无可信中心下基于身份的门限签名方案 被引量:1

Identity-Based Threshold Signature Scheme with Non-Trusted Dealer
原文传递
导出
摘要 考虑到很多门限签名方案都不抵抗恶意PKG攻击的事实,本文提出了一个无可信中心下基于身份的门限签名方案,避免了该类型攻击.在该方案中,每一个签名参与者都可以验证公钥和公钥份额的合法性,从而避免了公钥份额替换攻击.给出了无可信中心下基于身份的门限签名方案不可伪造性的安全模型,并利用此安全模型给出了该方案在标准模型下的安全性证明. Considering that lots of threshold signature schemes are insecure under malicious PKG attack, we pro- pose an identity-based threshold signature scheme with non-trusted dealer to avoid this attack. In our scheme, each signing player can verify the validity of the public key and the public key share to avoid the attack from replacing the public key share. This paper first gives the existential unforgeable security model of identity-based signature scheme with non-trusted dealer. We also prove the security from our proposed scheme in the standard model.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2013年第2期137-142,共6页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(61103247,61102093) 福建省自然科学基金(2011J05147) 福建师范大学青年骨干教师基金(fjsdjk2012049)资助项目
关键词 基于身份签名 无可信中心 标准模型 (t n)门限签名 identity-based signature non-trusted dealer standard model (t,n) threshold signature
  • 相关文献

参考文献12

  • 1Desmedt Y. Society and Group Oriented Cryptogra- phy: A New Coneept[DB/OL]. [2012-01-03]. http:// www. s pringerlink, com/ content/ q25q7 q31enwmbd9w/.
  • 2Shoup V. Practical Threshold Signatures [DB/OL]. [2012-03-03 ]. http://www, springerlink, com/con- tent/ kf qvp f ejaaue20tl/.
  • 3Gennaro R, Jareeki S, Krawezyk H, et al. Robust threshold DSS signatures[J]. Information and Com- putation, 2001,164 (1) : 54-84.
  • 4Shamir A. Identity-based Cryptosystems and Signature Schemes[DB/OL]. [2012-03-10]. http://www, spri- ngerlink, com/content/6a7k794 f4eprhah3/.
  • 5Boneh D,Franklin M. Identity-based Encryption from the Well Pairing[DB/OL]. [2012-02-03]. http://www. springerlink, com/content/b f5j8nhdp32pxqgy/.
  • 6Waters B. Efficient Identity-based Encryption without Random Oracles [ DB/OL]. [2012-03-15 ]. http:// www. s pringerlink, com/ content/ j 8xlgw8cbyk fl Sqt /.
  • 7Paterson K O,Schuldt J C N. Efficient Identity-based Signatures Secure in the Standard Model[DB/OL]. [ 2012-04-23 ]. http://www, springerlink, com/con- tent/91m4827843841734/.
  • 8Baek J, Zheng Y. Identity-based Threshold Signature Scheme from the Bilinear Pairings[DB/OL]. [2012-04- 03]. http://ieeexplore, ieee. org/xpl/login, jsp? tp = &arnumber = 1286437&url = http% 3A% 2F% 2Fieeexplore. ieee. org% 2Fxpls% 2Fabs_ all. jsp% 3Farnumber% 3D1286437.
  • 9Hu X, Qin Z,Li F. Identity-based threshold signature in the standard model[J]. International Journal of Network Security, 2010,10(1) : 75-85.
  • 10Gao W, Wang G, Wang X, et al. Efficient Identity- based Threshold Signature Scheme from Bilinear in the Standard Model [ DB/OL ]. [ 2012-02-01 ]. http:// eprint, iacr. org/2012/073.

同被引文献18

  • 1DESMEDT Y, FRANKEL Y. Shared generation of authenticators and signatures[A]. Proceeding of Advances in Cryptology-CRYPTO'91[C]. Springer-verlag, 1991. 457-469.
  • 2HARN L. Group-oriented (t, n) threshold signature and digital multi signature[J]. IEEE Proceedings Computers and Digital Techniques, 1994, 141(5):307-313.
  • 3LI Z C, ZHANG J M, LUO J. Group-oriented (t, n) threshold digital signa- ture schemes with traceable signers[A]. Electronic Commerce Techniques, the Second International Symposium, ISEC2001 [C]. 2001.57-69.
  • 4HWANG M, LU E. A practical (t, n) threshold proxy signature scheme based on the RSA cryptosystem[J]. IEEE Transactions on Knowledge and Data Engineering, 2003, 15( 16): 1552-1560.
  • 5HWANG M S, CHANG T Y. Threshold signatures: current status and key issues[J]. International Journal of Network Security, 2005, 1(3): 123-137.
  • 6ALMANSA J, DAMGARD I, NIELSEN J. Simplified threshold RSA with adaptive and proactive security[A]. EUROCRYPT 2006[C]. Pe- tersburg, Russia, 2006. 593-611.
  • 7GENARO R, HALEVI S, KRAWCZYK H, et al. Threshold RSA for dynamic and ad-hoc group[A]. EUROCRYPT 2008[C]. Istanbul, Tur- key, 2008. 88-107.
  • 8HALPERN J, TEAGUE V. Rational secret sharing and multiparty computation[A]. Proceedings of the 36th Annual ACM Symposium on Theory of Computing[C]. New York: ACM Press, 2004.623-632.
  • 9GORDON D, KATZ J. Rational secret sharing, revisited[A]. Proceed- ings of SCN 2006[C]. LNCS 4116. Heidelberg: Springer, 2006. 229-241.
  • 10ABRAHARN D, DOLEV R, GONEN. Distributed computing meets game theory: robust mechanisms for rational secret sharing and multi- party computation[A]. Proceedings of the 25th ACM Symposium on Principles of Distributed Computing[C]. 2006.53-62.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部