期刊文献+

压电材料反平面切口奇性指数分析 被引量:1

Analysis of singularity orders in piezo-electric notches under anti-plane loading
下载PDF
导出
摘要 为理解压电材料反平面切口尖端奇异状态,提出了一种切口奇性特征分析法。基于切口根部位移场幂级数渐近展开假设,从应力平衡方程和电荷守恒条件出发,导出了关于压电材料反平面切口奇性指数的特征微分方程组,并将切口的力电学边界条件以及界面协调条件表达为奇性指数和特征角函数的组合。从而,压电材料切口反平面奇性指数的计算被转化为相应边界条件下常微分方程组特征值的求解问题,采用插值矩阵法可以计算出各阶奇性指数和相应的特征角函数。该法既适合裂纹奇性分析,也可用于单、双材料切口的奇性计算,并避免了用迭代法求解超越方程的不足。因而具有适应性强的特点。计算发现,压电材料反平面切口存在两个奇性指数,切口的奇异性程度随着开角的增大而增强。 A new approach is presented to evaluate the singularity orders in the piezoelectric notch tip under anti-plane loading.Firstly,the displacement field at the notch tip is expanded as the power series asymptotic expansions,and the stress equilibrium equation and the charge conservation condition are turned into the characteristic equations with respect to the singularity orders.Then,the boundary conditions on the notch surfaces and the compatibility conditions on the bonded interface are transformed into the combination of the singularity orders and the eigen-functions.Thus,the calculation of the piezoelectric notch singularity orders under anti-plane loading is turned into evaluating the eigen-values of the ordinary differential equations under corresponding boundary conditions.The singularity orders and the corresponding characteristic angle functions can be obtained after the interpolate matrix method is introduced to solving the established ordinary differential equations.The present method can be used to analyze the singularity of the crack,the single material notch and bi-material notch.The accuracy of the present method is high because solving the transcendental equation by the iterative method can be successfully avoided.The numerical results obtained show that there are two singularity orders for the anti-plane piezoelectric notch under the boundary conditions of traction free and electrical insulation.The singularity degrees become strong with the increase of the notch opening angle.
机构地区 合肥工业大学
出处 《应用力学学报》 CAS CSCD 北大核心 2013年第2期211-216,303,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(11102056 11072073) 安徽省自然科学基金(11040606Q38)
关键词 压电材料 切口 反平面 渐近展开 奇性指数 piezoelectric material,notch,anti-plane,asymptotic expansions,singularity order
  • 相关文献

参考文献15

  • 1Chen B J, Xiao Z M, Liew K M. Electro-elastic stress analysis for a wedge-shaped crack interacting with a screw dislocation in piezoelectric solid[J]. International Journal of Engineering Science, 2002, 40: 621-635.
  • 2Pak Y E. Linear electro-elastic fracture mechanics of piezoelectric materials[J]. International Journal of Fracture, 1992, 54: 79-100.
  • 3Kwon S M, Lee K Y. Analysis of stress and electric fields in a rectangular piezoelectric body with a center crack under anti-plane shear loading[J]. International Journal of Solids and Structures, 2000, 37: 4859-4869.
  • 4刘新民,侯密山.压电材料渗透型反平面界面裂纹的奇异因子[J].工程力学,2000,17(2):18-22. 被引量:12
  • 5Chen Z T, Yu S W, Karihaloo B L. Anti-plane shear problem for a crack between two dissimilar piezoelectric materials[J]. International JoumalofFracture, 1997, 86: 9-14.
  • 6平学成,陈梦成,谢基龙.压电材料反平面界面裂纹的杂交元分析[J].应用力学学报,2010,27(1):113-118. 被引量:4
  • 7Li Xiangfang, Fan Tianyou. Semi-infinite anti-plane crack in a piezoelectric material[J]. International Journal of Fracture, 2000, 102:55-60.
  • 8胡克强,李国强,朱保兵.压电-压磁板条中反平面裂纹的电-磁-弹性分析[J].工程力学,2006,23(5):168-172. 被引量:9
  • 9Liu Weiju, Chue C H. Electroelastic analysis of a piezoelectric finite wedge with mixed type boundary conditions under a pair of concentrated shear forces and free charges[J].Theoretical and Applied FraetureMechanics, 2007, 48: 203-224.
  • 10邓其林,王自强.压电材料椭圆切口的力学分析[J].力学学报,2002,34(1):109-115. 被引量:8

二级参考文献36

  • 1曾云,胡元太,YANG Jiashi.压电反平面裂纹问题中的电场梯度效应[J].华中科技大学学报(城市科学版),2005,22(B05):31-35. 被引量:2
  • 2Zhang T Y, Tong P. Fracture mechanics for a mode Ⅲ crack in a piezoelectric material[J]. International Journal of Solids and Structures, 1996, 33: 343-359.
  • 3Pak Y E, Goloubeva E. Electroelastic properties of cracked piezoelectric materials under longitudinal shear[J]. Mechanics of Materials, 1996, 24: 287-303.
  • 4Narita F, Shindo Y. Layered piezoelectric medium with interface crack under anti-plane shear[J]. Theoretical and Applied Fracture Mechanics, 1998, 30: 119-126.
  • 5Li X F, Tang G J. Antiplane interface crack between two bonded dissimilar piezoelectric layers[J]. European Journal of Mechanics-A: Solids, 2003, 22: 231-242.
  • 6Kwon S M, Lee K Y. Analysis of stress and electric fields in a rectangular piezoelectric body with a center crack under anti-plane shear loading[J]. International Journal of Solids and Structures, 2000, 37 (35): 4859-4869.
  • 7Qin Q H. Solving anti-plane problems of piezoelectric materials by the Trefftz finite element approach[J]. Computational Mechanics, 2003, 31: 461-468.
  • 8Sze K Y, Wang H T, Fan H. A finite element approach for computing edge singularites in piezoelectric materials[J]. International Journal of Solids and Structures, 2001, 38: 9233-9252.
  • 9Wang J, Chen W Q. Piezoelectricity, acoustic waves and device applications [M].USA: World Scientific Publishing Co late Ltd, 2006.: 107-112.
  • 10Zhang J Q, Zhang B N, Fan J H. A coupled electromechanical analysis of a piezoelectric layer bonded to an elastic substrate: Part Ⅰ, development of governing equations[J]. International Journal of Solids and Structures, 2003, 40: 6781-6797.

共引文献28

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部