期刊文献+

弹性振动对翼型气动特性影响的数值模拟 被引量:2

Numerical simulation of elastic vibration on the airfoil aerodynamic characteristics
下载PDF
导出
摘要 通过求解雷诺平均非定常Navier-Stokes方程,采用数值模拟方法计算了俯仰和沉浮振动对NACA0012翼型平均气动特性的影响。结果表明:对于俯仰运动而言,在迎角α≤13°时的升力和力矩曲线的线性段部分,振幅角的变化对动态平均升力系数和动态平均力矩系数的影响不明显,与静态时的情况基本一致;当迎角α≥14°时,翼型振动的平均升力系数和动态平均力矩系数小于静态时的情况。同一迎角条件下的俯仰振动频率越高时,其动态的平均升力系数和动态平均力矩系数越大,频率较高时的失速迎角相对于频率较低时的情况有所推迟,但相对于静态的失速迎角而言,不同频率下的动态失速迎角均提前。对于沉浮运动而言,动态平均升力系数随振幅和频率的增加而减小,动态失速迎角随振幅和频率的增大而提前。 Based on the Reynolds-Averaged Navier-Stokes equations,the airfoil aerodynamic characteristics under simple pitching are calculated numerically.The following concluions can be drawn from the calculated results: for pitching motion,at the lift and moment curve linear part of the angle of attack α≤13°,the change of amplitude angle to the dynamic average lift coefficient and dynamic average moment coefficient is not obvious,consistent with the static situation.While for the angle of attack α≥14°,the airfoil vibration average lift coefficient and the dynamic average moment coefficient are less than those of the static case.The higher the pitching vibration frequency of the same angle of attack,the greater the dynamic average lift coefficient and dynamic average moment coefficient.The high frequency stall angle of attack relative to the lower frequency has been postponed,but compared with the static stall angle of attack,dynamic stall angle of attack appears in advance.For plunging motion,the dynamic average lift coefficient decreases with the amplitude and the frequency increases and the dynamic stall angle of attack appears in advance with amplitude and frequency increases.
出处 《应用力学学报》 CAS CSCD 北大核心 2013年第2期240-244,305,共5页 Chinese Journal of Applied Mechanics
关键词 弹性振动 振幅 频率 平均升力系数 数值模拟 elastic vibration,amplitude,frequency,average lift coefficient,numerical simulation
  • 相关文献

参考文献3

二级参考文献26

  • 1叶正寅,谢飞.弹性振动对翼型失速迎角附近流场的影响[J].航空学报,2006,27(6):1028-1032. 被引量:23
  • 2Buehrle R D, Young C P Jr, Balakrishna S, Kilgore W A. Experimental study of dynamic interaction between model support structure and a high speed research model in the national transonic facility [R]. AIAA Paper, 1994: 94- 1623.
  • 3Edwards J W. National transonic facility model and tunnel vibrations [R]. AIAA Paper, 1997: 97-0345.
  • 4Livne E. Controlled-motion models for wind tunnel unsteady aerodynamic loads identification on deforming configurations: A multidisciplinary challenge [R]. AIAA Paper, 2000: 2000- 1485.
  • 5Saitoh K, Hashidate H, Kikuchi T. Elastic deflection effects on transonic aerodynamics of a flutter wing model with control surfaces [R]. AIAA Paper, 1995: 95- 3926.
  • 6Whiting R J, Delamore-Sutcliffe D W, Greenwell D. Experimental and numerical study of gust loads on stall flutter initiation [R]. AIAA Paper, 2005: 2005-5097.
  • 7叶正寅.弹性振动翼对流场和气动性质的影响[C].近代空气动力学研讨会论文集,北京,2005.
  • 8Chen K-H, Pletcher R H. Primitive variable implicit calculation procedure for viscous flows at all speeds [J]. AIAA Journal, 1991, 29(8): 132- 137.
  • 9Piziali R A. An experimental investigation of 2D and 3D oscillating wing aerodynamics for a range of angle of attack including stall [R]. National Aeronautics and Space Administrotion (NASA-TM-4632), 1994.
  • 10BUEHRLE R D,YOUNG C P Jr,BALAKRISHNA S.Experimental study of dynamic interaction between model support structure and a high speed research model in the national transonic facility[R].AIAA Paper 94-1623,1994.

共引文献36

同被引文献23

  • 1白鹏,崔尔杰,周伟江,李锋.等速上仰翼型动态失速现象研究[J].力学学报,2004,36(5):569-576. 被引量:16
  • 2Carr L W. Progress in Analysis and Prediction of Dy- namic Stall[Jl. Journal of Aircraft, 1988, 25( 1): 6-17.
  • 3Koochesfahani M M. Vortical Patterns in the Wake of an Oscillating Airfoil [J]. AIAA Journal, 1989, 27 (9): 1200-1205.
  • 4Ekaterinaris J A, Sorensen N N, Rasmussen F. Numeri- cal Investigation of Airfoil Dynamic Stall in SimultaneousHarmonic Oscillatory and Translatory Motion [J]. Jour- nal of Solar Energy Engineering, 1998, 120( 1 ): 75-83.
  • 5Lee T, Gerontakos P. Investigation of Flow Over an Os- cillating Airfoil [ J]. Journal of Fluid Mechanics, 2004, 512: 313-341.
  • 6Kinsey T, Dumas G. Parametric Study of an Oscillating Airfoil in a Power-Extraction Regime[J]. AIAA Journal, 2008, 46(6): 1318-1330.
  • 7Yu M L, ttu 1,1, Wang L .I. Lxperlmental ana l~umcrl- cal Investigations on the Asymmetric Wake Vortex Struc- tures Around an Oscillating Airfoil[R]. A1AA 2012-0299.
  • 8Wang S, Ingham D B, Ma L, et al. Numerical Investi- gations on Dynamic Stall of Low Reynolds Number Flow Around Oscillating Airfoils [Jl. Computers & Fluids, 2010, 39(9): 1529-1541.
  • 9CastelIi M R, Garbo F, Benini E. Numerical Investiga- tion of Laminar to Turbulent Boundary Layer Transition on a NACA 0012 Airfoil for Vertical-Axis Wind Turbine Ap- plications[J]. Wind Engineering, 2011, 35(6): 661-686.
  • 10Menter F R, Langtry R B, Likki S R, et al. A Correla- tion- Based Transition Model Using Local Variables: Part I--Model Formulation[ R]. ASME 2004-GT-53452.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部