摘要
针对Yonghong Yao等给出的在Hilbert空间中单个非扩张映射和单调映射的迭代算法,和目前对非扩张映射族和其他映射之间迭代方法研究较少的前提下,结合Tomoo Shimizu等给出的在Hilbert空间中非扩张映射族的迭代算法,提出了非扩张映射族与α-逆-强单调映射的迭代算法。通过建立相应的收敛性定理,利用迭代算法,得到非扩张映射族公共不动点集和α-逆-强单调映射变分不等式解集的公共元。研究结果表明这个迭代序列强收敛于这一公共元。
Based on the terative algorithm of a nonexpansive mapping and a monotone mapping in Hilbert spaces given by Yonghong Yao etc, under the situation that currently less iterative method between nonexpansive mapping fami- lies and other mappings are studied, integrating the iterative algorithm for families of nonexpansive mappings in Hilbert spaces given by Tomoo Shimizu etc, we introduce a new iterative scheme of nonexpansive families mappings and a-inverse-strongly monotone mappings. Through the establishment of a strong convergence theorem and by using the new iterative algorithm, we got the common element of the set of fixed points of families of nonexpansive map- pings and the set of solutions of the variational for a-inverse-strongly monotone mappings. The results show that the iterative scheme converges strongly to the common element.
出处
《成都信息工程学院学报》
2013年第1期72-77,共6页
Journal of Chengdu University of Information Technology
基金
国家自然科学基金资助项目(11171046)
成都信息工程学院科研项目(KYTZ201004)资助
关键词
基础数学
α逆-强单调映射
强收敛性
变分不等式
非扩张映射族
basic mathematics
a-inverse-strongly monotone mappings
variational inequality
strongly convergence
nonexpansive families