期刊文献+

A Pseudo-Kinetic Approach for Helmholtz Equation

A Pseudo-Kinetic Approach for Helmholtz Equation
原文传递
导出
摘要 A lattice Boltzmann type pseudo-kinetic model for a non-homogeneous Helmholtz equation is derived in this paper. Numerical results for some model problems show the robustness and efficiency of this lattice Boltzmann type pseudo-kinetic scheme. The computation at each site is determined only by local parameters, and can be easily adapted to solve multiple scattering problems with many scatterers or wave propagation in non-homogeneous medium without increasing the computational cost. A lattice Boltzmann type pseudo-kinetic model for a non-homogeneous Helmholtz equation is derived in this paper. NumericM results for some model problems show the robustness and efficiency of this lattice Boltzmann type pseudo-kinetic scheme. The computation at each site is determined only by local parameters, and can be easily adapted to solve multiple scattering problems with many scatterers or wave propagation in nonhomogeneous medium without increasing the computational cost.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2013年第3期319-332,共14页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (Nos. 11171211, 11171212) the Fundamental Research Funds for the Central Universities
关键词 亥姆霍兹方程 动力学方法 格子BOLTZMANN HELMHOLTZ方程 散射问题 计算成本 动力学模型 非均匀介质 Lattice Boltzmann scheme Non-homogeneous Helmholtz equation Discrete velocity
  • 相关文献

参考文献32

  • 1Bayliss, A., Goldstein, C. I. and Turkel, E., An iterative method for the Helmholtz equation, J. Comput. Phys., 49, 1983, 443-457.
  • 2Benzi, R., Succi, S. and Vergassola, M., The lattice Boltzmann equations: theory and applications, Phys. Rep., 222, 1992, 147-197.
  • 3Chopard, B., Luthi, P. O. and Wagen, J. F., Lattice Boltzmann met'hod for wave propagation in urban microcells, IEEE Proc. Mierow. Antennas Propag., 144(4), 1997, 251-255.
  • 4Clayton, R. and Engquist, B., Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seis. Soc. America, 67(6), 1977, 1529-1540.
  • 5Clayton, R. and Engquist, B., Absorbing boundary conditions for wave-equation migration, Geophysics, 45(5), 1980, 895-904.
  • 6Collins, M. D. and Kuperman, W. A., Inverse problems in ocean acoustics, Inverse Problems, 10, 1994, 1023-1040.
  • 7Egorov, Y. V. and Shubin, M. A., Foundations of the Classical Theory of Partial Differential Equations (Translated by R. Cooke), Encyclopaedia of Mathematical Sciences, Vol. 30, Springer-Verlag, New York, 2001.
  • 8Engquist, B. and Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 31, 1977, 629-651.
  • 9Fries, T. P. and Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Int. J. Numer. Meth. Engng, 84, 2010, 253-304.
  • 10Giladi, E. and Keller, J. B., A hybrid numerical asymptotic method for scattering problems, J. Compu$. Phys., 174, 2001, 226-247.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部