期刊文献+

Schwarz Lemma and Hartogs Phenomenon in Complex Finsler Manifold 被引量:1

Schwarz Lemma and Hartogs Phenomenon in Complex Finsler Manifold
原文传递
导出
摘要 The authors prove the Schwarz lemma from a compact complex Finsler manifold to another complex Finsler manifold and any complete complex Finsler manifold with a non-positive holomorphic curvature obeying the Hartogs phenomenon.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2013年第3期455-460,共6页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No. 11171297) the Doctoral Program Foundation of the Ministry of Education of China (No. 20060335133)
关键词 Complex Finsler manifold Schwarz lemma Hartogs phenomenon Schwarz引理 复Finsler流形 歧管 全纯曲率
  • 相关文献

参考文献10

  • 1Ahlfors, L. V., Complex Analysis, McGraw-Hill, Auckland, 1979.
  • 2Yau, S. T., A general Schwarz lemma for Kahler manifolds, Amer. J. Math., 100(1), 1978, 197-203.
  • 3Griffiths, P. and Harris, J., Principles of Algebraic Geometry, Wiley-Interscience, New York, 1994.
  • 4Oriffiths, P., Two theorems on extension of holomorphic mappings, Invent. Math., 14, 1971, 27-62.
  • 5Shiffman, B., Extension of holomorphic maps into Hermitian manifolds, Math. Ann., 194, 1971, 249-258.
  • 6Abate, M. and Patrizio, G., Finsler Metric A Global Approach, Lecture Notes in Math., 1591, Springer- Verlag, Berlin, Heidelberg, 1994.
  • 7Lempert, L., A metrique de Kobayashi et la representation des domains sur la boule, Bull. Soc. Math. France, 109, 1981, 427-474.
  • 8Boyer, C. P. and Galicki, K., Sasakian geometry, holonomy and supersymmetry, to appear, arXiv: math/ 0703231.
  • 9Boyer, C. P. and Galicki, K., On Sasakian-Einstein geometry, Intenat. J. Math., 11, 2000, 873-909.
  • 10Zheng, F., Complex Differential Geometry, Study in Advanced Society, Vol. 18, A. M. S., Providence, RI, 2000.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部