期刊文献+

具有重频特性系统的动力响应分析 被引量:1

Dynamic response analysis of the linear system with repeated frequencies
下载PDF
导出
摘要 一般有阻尼线性系统出现重特征值时,基于振型正交性的复振型分解法将不再适用。本文综合运用高等数学、线性代数和复变函数理论,对具有重频特性的一般有阻尼线性多自由度系统给出了系统动力响应在时域中的计算方法。该方法充分利用复振型分解法和留数矩阵解耦法的优点,不仅概念清晰,而且易于理解和掌握,适合于大型复杂系统的动力响应分析。此外,本文给出了双自由度体系产生重特征值的条件,对典型实例进行了地震响应分析,并通过与Newmark-β法计算结果的对比,论证了文中所给计算公式的正确性。本文提出的分析方法具有普适性,对线性结构、机电和控制系统也都是适用的。 For the generally damped linear systems with repeated eigenvalues,a hybrid approach based on the complex modal superposition method and residue matrix decomposition method is presented. The hybrid approach incorporates the merits of the modal superposition method and residue matrix decompo- sition method, and has clear physical concept and is easily to be understood and mastered by engineering designers to analyze the large structures. Besides,the conditions producing repeated eigenvalues for the double degrees of freedom system are deduced, and the implementation procedure of the proposed hybrid approach in the paper is illustrated by analyzing simple numerical examples. Finally, correctness and effectiveness of the formula are judged by comparing the results obtained from Newmark-β methods. It pointed out that the method derived in this paper is also suitable for linear system, electro-mechanical and control system.
出处 《计算力学学报》 CAS CSCD 北大核心 2013年第2期198-203,230,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(51108429 90915012)资助项目
关键词 阻尼系统 重特征值 传递函数 留数矩阵 振型分解法 damped system repeated eigenvalues transfer function residue matrix modal superposition method
  • 相关文献

参考文献13

  • 1Caughey T K. Classical normal modes in damped linear dynamic systems[J]. Journal of Applied Mechanic, 1960,27(2) ..269-271.
  • 2Igusa T,Kiuerghian A D,SackmanJ L. Modal decom- position method for stationary response of non-classi- cally damped systems[J]. Earthquake Engineering Structure Dynamic, 1984,12(1) : 121-136.
  • 3Chu Y L, Song J W, Lee G C. Modal Analysis of Arbitraily Damped Three-Dimensional Linear Struc- tures Subjected to Seismic Excitations[R]. Technical Report MCER-09-0001, State University of NewYork at Buffalo, 2009.
  • 4Zhou X Y,Yu R F,Dong D. Complex mode superpo- sition algorithm for seismic responses of non-classi- cally damped linear MDOF system[J]. Journal of Earthquake Engineering, 2004,8(4) : 597-641.
  • 5Song J W,Chu Y L,Liang Z,et al. Modal Analysisi of Generally Damped Linear Structures Subjected to Seismic Excitations[R]. Technical Report MCEER-08 -0005,2008.
  • 6Fujino Y,Abe M. Design formulas for tuned mass dam- pers based on a perturbation technique [J]. Earthquake Engineering ~ Structural Dynamic, 1993,22 (10) : 833-854.
  • 7Tsai H C. Green's function of support-excited struc- tures with turned-mass dampers derived by a pertur- bation method[J]. Earthquake Engineering ~ Struc- tural Dynamic, 1993,22(11) ; 793-990.
  • 8Chen S H. Matrix Perturbation Theory in Structural Dynamic Design [M]. Beijing ~ Science Press, 2007.
  • 9张贤达.矩阵分析和应用[M].北京:清华大学出版社,2004.
  • 10Katsuhido O. Modern Control Engineering (fourth edition) [M]. Beijing: Tsinghua University Press, 2006.

二级参考文献4

  • 1诸德超,Proc of International Conference on Compulational Engineering Mechanics,1987年
  • 2张阿舟,航空学报,1984年,3期,321页
  • 3张文,多参数系统的振动与稳定性,1984年
  • 4胡海昌,固体力学学报,1980年,1期,30页

共引文献12

同被引文献6

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部