期刊文献+

包含几何误差的机械结合面法向刚度研究 被引量:2

Study of normal stiffness of machine joint surface involving geometric errors
下载PDF
导出
摘要 对包含几何误差的机械结合面进行离散化,离散后的微表面的基准平面高度满足结合面几何误差分布。每个微表面内,微凸体的高度只受粗糙度的影响。基于接触理论建立了微表面的法向刚度模型,通过对微表面模型集成获得了结合面的法向刚度模型。通过对所建模型的数值仿真,揭示了结合面法向刚度与间隙的非线性关系,几何误差的幅值和波长对法向刚度的影响以及非线性刚度对结合面振动特性的影响。计算结果表明:法向刚度随着间隙的减少而迅速增加,几何误差会导致结合面宏观上的局部接触和应力集中;在相同干涉量下,法向刚度随着几何误差幅值的增加而增加,但与结合面的波长没有关系;非线性刚度会导致结合面固有频率的下降和振动位移的不对称。 The machine joint surface including geometric errors was discretized into mini interfaces, to make their base planes well satisfied the geometric error distribution of the joint interface. For each mini surface, the height of micro-peaks only depended on the surface roughness. The normal stiffness model of mini interfaces was proposed based on the contact mechanics, and then the normal stiffness model of the whole joint interface was obtained through combing the models of mini interfaces. By numerical simula- tion,it revealed the nonlinear relationship between the normal stiffness and clearance of interfaces, the effects of amplitude and wavelength of geometric errors on normal contact stiffness, and the influence of nonlinear stiffness on vibration. The result showed that the normal stiffness rapidly increased with the decrease of clearance. As a result of geometric errors,there would be local contact and stress concentra- tion of joint surface in macroscopical. With the same interference value, the normal contact stiffness increased with the amplitude of geometric errors increasing, which was independent on the wavelength of geometric errors. The nonlinear stiffness can lead to the decrease of the natural frequency of joint surface and asymmetry of the vibrating displacement.
出处 《计算力学学报》 CAS CSCD 北大核心 2013年第2期287-291,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(51175242) "高档数控机床与基础制造装备"科技重大专项(2010ZX04011-032)资助项目
关键词 几何误差 机械结合面 法向刚度 geometric errors machine joint surface normal stiffness
  • 相关文献

参考文献13

二级参考文献56

共引文献56

同被引文献30

  • 1陈辉,胡元中,王慧,王文中.粗糙表面分形特征的模拟及其表征[J].机械工程学报,2006,42(9):219-223. 被引量:46
  • 2赵永武,吕彦明,蒋建忠.新的粗糙表面弹塑性接触模型[J].机械工程学报,2007,43(3):95-101. 被引量:107
  • 3Majumdar A, Bhushan B. Fractal modelof elastic-plastic contact between rough surfaces[ J]. Journal of Tribology 1991, 113 ( 1 ) :1 - 11.
  • 4Ciavarella M G, Murolo G, Demelioa G, et al. Elastic contact stiffness and contact resistance for the Weierstrass profile [J]. Journal of the Mechanics and Physics of Solids, 2004,52 (6) : 1247 - 1265.
  • 5Bora C K, Flater E E, Street M D, et al. Multiscale roughness and modeling of MEMS interfaces[J]. Tribology Letters, 2005, 19(1): 37 -48.
  • 6Kogut L, Komvopoulos K. Electrical contact resistance theory for conductive rough surfaces separated by a thin insulating film[ J ]. Journal of Applied Physics ,2004,95 (2) : 576 - 585.
  • 7Jackson Robert L, Green Itzhak. A finite element study of elasto-plastic hemispherical contact against a rigid flat [ J]. ASME Journal of Tribology, 2005,127 (2) : 343 - 354.
  • 8Kogut L, Etsion I. Elastic-plastic contact analysis of a sphere and a rigid flat[ J ]. ASME Journal of Applied Mechanics,2002, 69(5): 657-662.
  • 9Johnson K L. Contact Mechanics [ M]. Cambridge: Cambridge University Press, 1985.
  • 10Vu-Quoc L, Zhang X, Lesburg L. A normal force-displacement model for contacting spheres accounting for plastic deformation: force-driven formulation [ J]. ASME Journal of Applied Mechanics, 2000, 67 (2) : 363 -371.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部