期刊文献+

超声波空化作用对ICP光源辐射强度的影响

Effect of Ultrasonic Cavitation on ICP Source Radiation Intensity
下载PDF
导出
摘要 为了增大电感耦合等离子体辐射强度,降低分析检出限,实验研究了水样品经过超声波空化处理以后样品表面张力和粘度的变化,并探索了空化效应对光谱强度和信背比的影响。实验结果证明,样品溶液的表面张力和黏度随着超声波功率和空化时间的增加均呈现出先减小后增大的变化规律,在功率为50 W、时间为15min时水样品的表面张力和粘度最低。经此条件处理的水样品引入ICP以后,元素Al,Cd,Mn,Ni,Pb和Zn的谱线强度比无空化处理时分别提高了56.73%,57.23%,44.57%,43.20%,39.04%和40.19%,光谱信背比分别提高了61.54%,64.86%,44.95%,52.27%,40.84%和40.85%。可见,空化处理水溶液能够改善ICP发射光谱质量。 In order to increase the intensity of inductively coupled plasma radiation and reduce the detection limit of analysis, the experiment studied on the change of surface tension and viscosity of the water samples which were processed by the ultrasonic cavitation, meanwhile the influence of cavitation effect to samples' spectral intensity and signal-to-background ratio was researched. The experimental results showed that the surface tension and viscosity of sample solution initially decreased and then increased as the ultrasonic power and cavitation time monotonously increased, and the minimum value could be achieved at the ultrasonic power of 50W and the cavitation time of 15 minutes. Under the best experiment condition (the ultrasonic power of 50W and the cavitation time of 15 min), the results revealed that the spectral lines intensity of element A1, CA, Mn, Ni, Pb and Zn were increased around 56. 73%, 57. 23%, 44. 57%, 43.20%, 39.04% and 40. 19% than that without cavitation treatment, spectral signal-background ratio increased about 61.54%, 64. 86%, 40. 95%, 52. 27%, 37. 84% and 40. 84%, respectively. Thus it can be seen that cavitation-processed water solution can improve the quality of Inductively Coupled Plasma-atomic emis- sion spectrum.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第5期1338-1341,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(10804025) 河北省自然科学基金项目(A2008000560)资助
关键词 电感耦合等离子体 空化作用 光谱强度 信背比 Inductively coupled plasma Cavitations Spectral intensity Signal-to-background ratio
  • 相关文献

参考文献14

  • 1Stratis J A, Lalia-Kantouri M, Charalambous E, et al. Therm. Anal. and Calorim., 2011, 104: 431.
  • 2Zhu T Q, Wang C S, Wang H M, et al. Journal of Cultural Heritage, 2010, 11. 482.
  • 3Cheng Yonga. Procedia Engineering, 2011, 24: 447.
  • 4Sengupta A, Kulkarni M J, Godbole S V. Radioanal. Nucl. Chem., 2011, 289, 961.
  • 5Adya V C, Sengupta A, Dhawale B A, et al. Radioanal. Nucl. Chem., 2012, 291: 843.
  • 6Yang X J, LowGKC. Environ. Chem. Lett., 2009, 7: 381.
  • 7Alexandra Petrotou, Konstantinos Skordas, Georgios Papastergios, et al. Environ. Earth. Sci., 2012, 65: 823.
  • 8Sitki Baytak, Fahmida Zereen, Zikri Arslan. Talanta, 2011, 84 : 319.
  • 9Mustafa Harmankaya, Sait Gezgin, Mehmet Musaozcan. Environ Monit Assess, 2012, 184: 5415.
  • 10Nancy Lewen, Dennis Nugent. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52: 652.

二级参考文献14

  • 1Yang X J, Low G K C. Environ. Chem. Lett. , 2009, 7: 381.
  • 2Chope G A, Terry L A. Food Chemistry, 2009, 115: 1108.
  • 3Yip Y C, Chan K K, Cheung P Y, el at. Food Chemistry, 2009, 112: 1065.
  • 4WEN Xiang dong, ZHAO Xi-wen, WEN Bin, et al(闻向东,赵希文,文斌,等).冶金分析,2008,28(3):61.
  • 5Yasuaki (), Keisuke Y, Hiroko K, et al. Applied Spectroscopy, 2009, 63(12): 1403.
  • 6Lewen N, Nugent D. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52: 652.
  • 7Zachariadis G A, Sahanidou E. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50: 342.
  • 8中华人民共和围国家标准.GB/T5650--2006.
  • 9Razic S, Todorovic M, Holclajtner Antunovie I, et al. Fresenius Journal of Analytical Chemistry, 1996, 355(3-4) : 274.
  • 10Zhu X B, Chang X J, Cui Y M, et al. Microchemical Journal, 2007, 86: 189.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部