期刊文献+

胞腔同调边缘学习算法研究 被引量:2

On Cellular Homology Boundary Learning Algorithms
下载PDF
导出
摘要 边缘划分问题是数据分析的核心问题之一.针对晶体数据的边缘分类问题,引入同调论的思想,提出了胞腔同调边缘算法和正则胞腔同调边缘学习算法及上同调边缘学习算法,并将其应用于晶体结构预测和分类.鉴于晶体数据满足对称群的基本性质,引用同调代数的方法从机器学习的角度来研究数据的边缘分类问题.为了从不同角度构造分类模型,先从相对同调边缘展开为局部同调和定向同调,再深入到上同调边缘算法和腔胞同调边缘算法,由着重系数定理扩展到正则胞腔同调,进而延伸至相对流形.仿真结果表明了算法的有效性. Boundary partitioning problem is one of the core issues of data analysis. In this paper, homology theory is used to solve the crystal data boundary classification problems. By using homology theory, a cellular homology boundary algorithm, a regular cellular homology boundary algorithm and cohomology boundary learning algorithms are presented and applied to the crystal structure prediction and classification. Because the crystallographic data meet the basic properties of the symmetry group, the paper refers to the homology algebra methods from machine learning point of view to research data in the boundary classification problem. To construct classification model from different angles, the paper first starts with a relatively homology boundary expanded as a local homology and orientated homology, and then goes into the cohomology boundary algorithm and the cellular cohomology boundary algorithm. Finally, this paper extends the Focus factor theorems to regular cellular cohomology, and then the relative manifold. Experimental results show the efficiency of cohomology boundary learning algorithm.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第5期1005-1011,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60970067 61033013) 江苏省自然科学基金项目(BK2011284 SBK201222725) 苏州大学东吴学者计划基金项目(14317360) 苏州大学科研预研基金项目(SDY2011B09 SDY2011A25) 苏州大学科技创新团队基金项目(SDT2010B02)
关键词 晶体数据 同调论 胞腔同调 边缘学习算法 正则胞腔边缘学习算法 crystal data homology theory cellular homology boundary learning algorithm regularcellular boundary learning algorithm
  • 相关文献

参考文献16

  • 1李方华.电子晶体学图像处理及其在材料科学中的应用[J].稀有金属材料与工程,2002,31(3):161-166. 被引量:5
  • 2He Wanzhong, Li Fanghua. Image deconvolution for defected crystals in field emission high resolution electron microscopy[J]. Uhramicroscopy, 1997, 70(1/2): 1-11.
  • 3Li Fanghua, Wang Di, He Wanzhong, et al. Amplitude correction in image deconvolution for determining crystal defects at atomic level [J]. Electron Microscopy, 2000, 49 (1): 17-24.
  • 4蒋华,李方华.Bi_2(Sr_(0.9)La_(0.1))_2CoO_y晶体超结构的电子晶体学研究[J].电子显微学报,1998,17(5):523-524. 被引量:1
  • 5Fan Haifu, 1.i Yang, Wang Zhenhua, et al. Electron Crystallographic Study of Incommensurate Modulated Structures [J]. Microscopy and Microanalysis, 2002, 8 (2) : 308-309.
  • 6Fan Haifu. Hao Quan, Harvey, et al. Applications of direct methods with single isomorphous replacement or one wavelength anomalous scattering data[J]. Direct Methods for Solving Macromolecular Structures, 1998, 507(1) : 479- 485.
  • 7Fan Haifu, Woolfson M M, Yao Jiaxing, et al. New techniques of applying multi-wavelength anomalous scattering data [C/OL]//Proe of the Royal Society A: Mathematical. Physical and Engineering Sciences. 1993:13-32 [2011 05- 01 ]. http ://rspa. royalsocietypublishing, org/content/442/1914/ 13. full. pdf+ html.
  • 8Fan Haifu. HaoQuan, Gu Yuanxin, et al. Combining direct methods with isomorphous replacement or anomalous scattering dat small protein 46(11): 935- aVII. Ab initio phasing of the OAS data froma [J]. Acta Crystallographica Section A, 1990, 939.
  • 9Li Fanghua, Fan Haifu, Zhao Zhongxian. Electron crystallographic study of superconducting oxides and related compounds [J]. Physica C: Supercoductivity, 1997, 282 (1): 101-101.
  • 10马中骐.物理学中的群论[M].北京:科学出版社,2006.

二级参考文献40

  • 1岳士弘,王正友.二分网格聚类方法及有效性[J].计算机研究与发展,2005,42(9):1505-1510. 被引量:15
  • 2苏依拉 ,郑磊 ,刘椿年 ,钟宁 ,LIU Jiming .基于OWL和Horn子句的β-PSML语言框架[J].计算机工程,2005,31(23):65-66. 被引量:3
  • 3Chaira T,Ray A K.A new measure using intuitionistic fuzzy set theory and its application to edge detection[J].Applied Soft Computing, 2008,8 (2) : 919-927.
  • 4Stormark O.Lie's Structural approach to PDE systrms[M].北京:清华大学出版社,2004.
  • 5Weiss L G.Wavelets and wideband correlation processing[J].IEEE Signal Processing Magnizine, 1994( 1 ) : 13-32.
  • 6江泽函.拓朴学引论[M].上海:上海科学技术出版社,1978.
  • 7Mendelson S.A few notes on statistical learning theoly[J].Mendelson S,Smola A J.LNAI 2600:Advanced Lectures on MachineLearning, New York:Springer-Verlag,2003,12(40) : 1-5.
  • 8Cortes C,Vapnik V.Support vector networks[J].Machine Learning, 1995,20: 273-297.
  • 9Aiolli F,Sperduti A.A re-weighting strategy for improving margins[J].Artifieal Intelligence,2002,1(37) : 197-216.
  • 10Cristianini N,Schawe-Taylor J.An introduction to support vector machines and other kernel-based learning metho[M].Cambridge: Cambridge University Press,2000:23-59.

共引文献11

同被引文献92

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部