摘要
路代数是加法幂等的半环,它包括了布尔代数,模糊代数,分配格及斜坡.因此布尔矩阵,模糊矩阵,格矩阵及斜矩阵都是路代数上的典型矩阵.广义模糊幂零矩阵指的就是路代数上的幂零矩阵.在2010年,Tan研究了路代数上矩阵的幂零性.在Tan的基础上继续讨论了路代数上幂零矩阵的幂零指数.
Path algebras are additively idempotent semirings which includes Boolean alge-bra, Fuzzy Mgebra, Distributive lattices and Inclines. Thus the Boolean matrices, the Fuzzy matrices, the Lattice matrices and the Incline matrices are typical examples of matrices in Path algebras. In this paper, generalized Fuzzy nilpotent matrices are considered as matrices in Path algebras. In 2010, Tan studied the nilpotency of matrices in Path algebras. On the basis of Tan, this paper is.going to discuss the nilpotent index of the nilpotent matrix in Path algebra.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第8期275-280,共6页
Mathematics in Practice and Theory
基金
中央高校基本科研业务费--优秀博士生支持计划项目(E022050205)
关键词
路代数
幂零矩阵
幂零指数
path algebra
nilpotent matrix
nilpotent index