期刊文献+

C层包覆Ag纳米颗粒基底的表面增强拉曼散射研究 被引量:4

C shell coated Ag nanoparticles-based substrates for surface-enhanced Raman scattering
原文传递
导出
摘要 Ag纳米结构是最常用的表面增强拉曼散射(SERS)活性基底,缺点是Ag的化学稳定性和生物相容性比较差。为此,利用化学方法合成了一种新型的SERS活性基底—纳米碳层包覆的Ag(Ag@C)纳米颗粒。利用透射电子显微镜(TEM)和紫外-可见吸收光谱对制备的核壳结构纳米颗粒进行了表征,并研究了颗粒的SERS活性。结果表明,罗丹明6G(R6G)、结晶紫(CV)和孔雀石绿(MG)分子在Ag@C悬浮液中的SERS光谱强度与在Ag胶中的SERS光谱强度相比显著增强。根据光谱的变化规律推断,额外的增强来自于化学增强。由于C层的存在,相比于Ag纳米颗粒,Ag@C颗粒的化学稳定性和生物相容性都有所改进。 Ag is the most common surface-enhanced Raman scattering (SERS) active element because of its great enhancement.ability in the visible spectrum region. However,Ag has its serious drawbacks as SERS substrate . bad chemical stability and biological compatibility. In order to overcome these disadvantages,we propose a new kind of SERS-active Ag substrate in this work,C shell coated Ag (Ag@C) nanoparticles. Ag nanoparticles were prepared by Leers method and then C shells were coated on them in hydrothermal condition. To characterize the prepared core-shell nanoparticles, UV-vis absorption spectra,transmission electron micrograph (TEM) and SERS spectra are used. UV-VIs absorption spectra show that when the Ag nanoparticles are not coated with C shell, the highest absorption peak is located at 417 nm,corresponding to the typical absorption band of Ag nanoparticles. As the Ag nanoparticles in the same size are coated with C shell, the peak is red-shifted to 426 nm due to the variation of dielectric constant induced by the presence of C shell. The results of the SERS experiment show that the SERS intensities of Rhodamine 6G (R6G) ,crystal violet (CV) and malachite green (MG) in Ag@C suspension can be significantly increased, as compared with that in Ag colloids. In addition, the variations of the intensities of different vibration hands in SERS spectra are distinguished. All the results indicate that extra enhancement should be attributed to chemical enhancement. The newly developed substrate has better chemical stability and biological compliance due to the presence of C. So the Ag@C nonoparticles are the potential SERS-active substrates.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第5期930-934,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(51002007)资助项目
关键词 表面增强拉曼散射(SERS)基底 C壳层 C层包覆的Ag(Ag@C)纳米颗粒 罗丹明6G(R6G) 化学增强 surface-enhanced Raman scattering (SERS)-active substrate C shell C shell coated Ag (Ag@C) nanoparticle rhodamine 6G (R6G) chemical enhancement
  • 相关文献

参考文献16

  • 1Chen T,Wang H,Chen G,et al.Hotspot-induced transformation of s urface-enhanced Raman scattering fingerprints[J].Acs Nano,2010,4(6):3087-3094.
  • 2Han X X,Chen L,Guo J,et al.Coomassie brilliant dyes as surface -enhanced Raman scattering probes for protein-ligand recognitions[J].Anal.Chem.,2010,82(10):4102-4106.
  • 3Lu W T,Singh A K,Khan S A,et al.Gold nano-popcorn-based targe ted diagnosis,nanotherapy treatment,and in situ monitoring of photothermal therapy response of prostate c ancer cells using surface-enhanced Raman spectroscopy[J].J.Am.Chem.Soc.,2010, 132(51):18103-18114.
  • 4Khajehpour K J,Williams T,Bourgeois L,et al.Gold nanothorns-ma croporous silicon hybrid structure:a simple and ultrasensitive platform for SERS[J].Chem.Comm.,2012, 48(43):5349-5351.
  • 5方靖淮,曹敏,成鸣飞,金永龙.树枝状Ag基底的制备及其SERS活性研究[J].光电子.激光,2010,21(11):1660-1662. 被引量:2
  • 6Liu F X,Cao Z S,Tang C J,et al.Ultrathin diamond-like carbon f ilm coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy[J].Ac s Nano,2010,4(5):2643-2648.
  • 7Mao Z,Song W,Xue X X,et al.Interfacial charge-transfer effects in semiconductor-molecule-metal structures:influence of contact variation[J].J.Phys.Chem.C,2012,116(27):14701-14710.
  • 8Chenal C,Birke R L,Lombardi J R.Determination of the degree of charge-transfer contributions to surface-enhanced Raman spectroscopy[J].Chemphyschem,2008,9(11):1617-1623.
  • 9Lombardi J R, Birke R L.A unified view of surface-en-hanced Rama n scattering[J].Acc.Chem.Res.,2009,42(6):734-742.
  • 10Birke R L,Znamenskiy V,Lombardi J R.A charge- transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag(10)-pyridin e complex[J].J.Chem.Phys.,2010,132:214707.

二级参考文献8

共引文献1

同被引文献49

  • 1Berkovitch N, Ginzburg P, Orenstein M. Nano-plasmonic antennas in the near infrared regime[J]. Phys. :Con- dens. Matter,2012,24(7) :073202.
  • 2Adleman J R, Boyd D A,Goodwin D G,et al. Heteroge- nous catalysis mediated by plasmon heating [J]. Nano Lett, 2009,9 : 4417-4423.
  • 3Challener W A, Peng C, Itagi A V, et al. Heat-assisted magnetic recording by a near-field transducer with effi- cient optical energy transfer[-J]. Nat. Photonics, 2009,3 : 220-224.
  • 4Wang L, Li B W. A storage of phononic information[J]. Phys. Rev. Lett, 2008,101 (26) : 267203.
  • 5Jain P K, Huang X H, EI-Sayed I H,et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medi- cine[-J]. Acc. Chem. Res, 2008,41 (12) : 1578-1586.
  • 6Leo C, Lin A, Hirsch L, et al. Nanoshell-enabled photonics- based imaging and therapy of cancer[-J]. Technology in Cancer Research & Treatment, 2004,3 ( 1 ) : 33-40.
  • 7Baffou G, Quidant R, Girard C. Heat generation in plas- monic nanostructures: Influence of morphology[-J]. Appl. Phys. Lett, 2009,94(15) : 153109.
  • 8Herzog J B, Knight M W, Natelson D. Thermoplasmonics: quantifying plasmonic heating in single nanowires[J]. Nano Lett,2014,14(2) :499-503.
  • 9Florous N J, Saitoh K, Koshiba M. Enhanced thermoplas- monic oscillations in metallic nanostructured particles for the realization of nanofluidic sensors [J]. IEEE Trans. Nanotechnol, 2007,6 (5) :549-555.
  • 10Zhu M, Baffou G, Meyerbroker NI et al. Micropatterning thermoplasmonic gold nanoarrays to manipulate cell ad- hesion[J]. ACS Nano, 2012,6(8) : 7227-7233.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部