期刊文献+

液相化学还原法制备分散稳定的纳米铜溶胶 被引量:7

Synthesis of Stable and Disperse Copper Nanoparticles Colloids via Solution Chemical Reduction
下载PDF
导出
摘要 以硫酸铜为铜源,水合肼为还原剂,聚乙烯吡咯烷酮(PVP)为保护剂,十六烷基三甲基溴化铵(CTAB)为分散剂,采用液相化学还原法制备纳米铜溶胶。通过单因素法考察了体系的反应温度、PVP用量、CTAB用量和水合肼浓度等对纳米铜溶胶合成的影响,获得制备高分散稳定纳米铜溶胶的适宜条件。纳米铜溶胶通过紫外-可见吸收光谱(UV-Vis)和透射电镜(TEM)表征,而铜纳米粒子(CuNPs)则通过红外光谱(FTIR)、X射线衍射(XRD)和热分析(TG)检测。研究结果表明:纳米铜溶胶具有较高的稳定性;CuNPs的粒径分布为10~30nm,其表面吸附有少量的保护剂PVP,有利于防止CuNPs的团聚及氧化,使其具有良好的分散性。 Copper nanoparticles (CuNPs) colloid was synthesized via solution chemical reduction method, using cupric sulfate as a copper resource, hydrazine hydrate as reducing agent, poly(N-vinylpyrrolidone) (PVP) as protec- tive agent, and cetyltrimethyl ammonium bromide (CTAB) as dispersing agent. The influences of reaction tempera- ture, PVP dosage, CTAB amount, and hydrazine hydrate concentration on the synthesis of CuNPs colloids were in- vestigated, and a optimum condition for the synthesis of a highly stable and disperse copper nanoparticles colloid was thus obtained. The CuNPs colloid was characterized by UV-Vis and TEM, and the CuNPs were analyzed by KTIR, XRD and TG. Results show that the CuNPs colloid has a high dispersion stability. The CuNPs have a particle size of 10-30 nm. A small amount of PVP was adsorbed on the surfaces of the CuNPs, which could prevent the CuNPs from aggregation and oxidation.
机构地区 西南科技大学
出处 《材料导报》 EI CAS CSCD 北大核心 2013年第8期32-35,共4页 Materials Reports
基金 四川省非金属复合与功能材料重点实验室开放基金(11zxfk10)
关键词 液相化学还原 铜纳米粒子 溶胶 solution chemical reduction, copper nanoparticles, colloid
  • 相关文献

参考文献16

  • 1Vaughan 0 P H, Kyriakou G, Macleod N, et al. Copper asa selective catalyst for the epoxidation of propene[J]. J Catal, 2005,236(2):401.
  • 2Jang S, Seo Y, Choi J, et al. Sintering of inkjet printed copper nanoparticles for fexible electronics [J]. Scripta Mater, 2010,62(5) : 258.
  • 3Liu Y Y, Liu D M, Chen S Y, et al. In situ synthesis of hy- brid nanocomposite with highly order arranged amorphous metallic copper nanoparticle in poly(2-hydroxyethyl metha- crylate) and its potential for blood contact uses [J].Acta Biomater, 2008,4 (6) : 2052.
  • 4Zhou F, Zhou R M, Hao X F, et al. Infuences of surfactant (PVA) concentration and pH on the preparation of copper nanoparticles by electron beam irradiation [J]. Radiation Phys Chem, 2008,77(4) : 169.
  • 5Kwon Y S, Ilyin A P, Tikhonov D V, et al. Characteristics of nanopowders produced by wire electrical explosion of tinned copper conductor in argon[J].Mater Lett, 2008,62 (1):3143.
  • 6Boytsov O, Ustinov A I, Garret E, et al. Correlation be- tween milling parameters and microstructure characteristics of nanocrystalline copper powder prepared via a high energy planetary ball mill [J]. J Alloys Compd,2007,432(1) :103.
  • 7Qi L M, Ma J M, Shen J L. Synthesis of copper nanoparti- cles in nonionic water-in-oil microemulsions[J].J Colloid Interf Sci,1997,186(2) :498.
  • 8Lee Y, Choi J, Lee K J, et al. Large-scale synthesis of cop- per nanoparticles by chemically controlled reduction for ap- plications of inkjebprinted electronics[J]. Nanotechnology,2008,19(41):415604.
  • 9Engels V, Benaskar F, Jefferson D A, et al. Nanoparticu- late copper-routes towards oxidative stability[J].Dalton Trans, 2010,39 (28) : 6496.
  • 10Mie G, Medien B, Zur O T. Speziell kolloidaler metall6sungen [J].Annals Phys, 1908,330(3) : 377.

同被引文献123

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部