期刊文献+

多Agent系统的Q值强化学习算法 被引量:2

Q-learning Algorithm in Multi-Agent Systems
下载PDF
导出
摘要 对多Agent系统的Q值强化学习算法进行研究,将历史信息因素的影响添加到Q值学习中,提出了一个新的基于多Agent系统的Q值学习算法.该算法在保证多Agent系统利益达到相对最大化的同时,也有效降低了Agent之间的冲突率.最后,通过仿真测试验证了该算法的有效性. This paper investigated reinforcement learning in multi-Agent systems. By adding the historical information in learning process and updating the Q learning function, a new algorithm in multi-agents environment was proposed. This algorithm guaranteed the maximization of interests and reduced the conflict rate among multiple Agents. Finally, the effectiveness of the algorithm was verified by the simulation.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2013年第2期158-160,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(61073065) 河南省社科联 省经联团调研课题(SKL-2012-2608)
关键词 多AGENT 强化学习 Q值学习 multi-Agent systems reinforcement learning Q-learning
  • 相关文献

参考文献8

  • 1仲宇,顾国昌,张汝波.多智能体系统中的分布式强化学习研究现状[J].控制理论与应用,2003,20(3):317-322. 被引量:12
  • 2Matkins J C H, Dayan P. Q-learning[J]. MachineLeaming, 1992,8(1) : 279-292.
  • 3李影洁,朱秀丽.一种新的基于Agent流程建模方法[J].河南师范大学学报(自然科学版),2012,40(3):62-65. 被引量:2
  • 4Abdallah S, Lesser V. Multiagent reinforcement learning and self-organization in a network of agents[C]. AAMAS07, Honolulu,2007.
  • 5冯乃勤,孙全党,王伟,南书坡.Mobile Agent系统的整体安全机制研究[J].河南师范大学学报(自然科学版),2009,37(1):53-55. 被引量:1
  • 6Gies O, Chaib-draa B. Apprentissage dela coordination multiagent: unemethode basee surle Q-learningpar j eu adaptatif[J]. Revue d'Intel ligence Artificielle, 2006,20 (2/3) : 385- 412.
  • 7Hoogendoorn M. Adaptation of organizational models for multi-agent systems based on max flow networks[C]. UCAI'07, Hyderabad,2007.
  • 8Gomes E R, Kowalczyk R. Dynamic analysis of muhiagent q-learning with egreedy exploration[C]. ICML'09,Montreal,2009.

二级参考文献69

  • 1丁士拥,常天庆,牛春平,张建伟.基于Agent的建模技术研究[J].计算机工程与设计,2007,28(8):1747-1749. 被引量:12
  • 2Jansen W A. Counter measures for the mobile agent security [J]. Computer Communications, 2000,23:1667-1676 .
  • 3De Snoo C. Modelling Planning Processes with TALMOD[D]. Groningen: University of Groningen,2005.. 5-15.
  • 4Jennings N R. Faratin, Norman. Autonomous Agents for Business Process Management[J]. Journal of Applied Artificial Intelligence, 2009(14) : 145-189.
  • 5Bosansky B. A Virtual Company Simulation by Means of Autonomous Agents[D]. Prague: Charles University,2007.
  • 6Buhler P A, Vidal J M. Towards Adaptive Workflow Enactment Using Multi-agent Systems[J]. Technology and Management,2009(6) : 61-87.
  • 7Wu J, Gan R. Norm-based contract net protocol for coordination in multi-agent systems[C]. Pierre-Jean charrel.. Project Management and Risk Management in Complex Projects, 2006:91-107.
  • 8SUTTON R. Learning to predict by the methods of temporal difference [J]. Machine Learning, 1988,3( 1 ) :9 - 44.
  • 9RIBEIRO C. Embedding a priori knowledge in reinforcement learning [ J]. J of Intelligent and Robotic Systems, 1998,21 ( 1 ) :51 - 71.
  • 10OH C, NAKASHIMA T, ISHIBUCHI H. Initialization of Q -values by fuzzy rules for accelerating Q -learning [A]. Proc of IEEE Int Conf on Neural Networks [ C ]. Piscataway, NJ: IEEE Press,1998:2051 - 2056.

共引文献12

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部