期刊文献+

具有时滞的人口动力系统的近似能控性

The Approximate Controllability of Population System with Time Delay
下载PDF
导出
摘要 针对人口动力系统能控性问题,该文运用算子半群方法,在解半群意义下利用无时滞人口动力系统的精确能控性结果讨论了具有时滞的人口动力系统的近似能控性,并给出了近似能控性证明。 This paper is considered that the controllability of population system by using operator semigroups. It is obtained that the approximate controllability of population system with time delay under solution semig- roups, by using the exact controllability results of population system without time delay.
出处 《杭州电子科技大学学报(自然科学版)》 2013年第1期94-98,共5页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 人口动力系统 时滞 强连续算子半群 能控性 population system time delay strong continue semigroups controllability
  • 相关文献

参考文献6

  • 1Barbu V, Iannelli M, Martcheva M. On the controllability of the Lotka-McKendrick model of population dynamics I J]. J Math Anal Appl,2001, (1) :142 - 165.
  • 2Guo B Z, Chart W L. A Semigroup approach to age-dependent population dynamics with time delay, in partial differential equations [ J ]. Communications in Partical Differential, 1989, (6) : 809 - 832.
  • 3Xin Yu. Differentiability of the age-dependent population system with time delay in the birth process[ J]. J Math Anal Ap- pl,2005, (2) :576 - 584.
  • 4张连平.人口半群的可微性质[J].系统科学与数学,1988,(2):181-187.
  • 5于欣,刘康生.线性控制系统对小时滞的鲁棒能控性[J].数学年刊(A辑),2007,28(2):151-158. 被引量:3
  • 6Xin Yu, Chao Xu. On differentiability and Stability of Populaiton System with Time Delay[ J ]. Proceedings of the 5th W C on intelligent Control and Automation, 2004, (1) :15 -19.

二级参考文献15

  • 1Curtain R.F.and Pritchard A.J.,Infinte Dimensional Linear Systems Theory[M],New York:Springer-Verlag,1978.
  • 2Curtain R.F.and Zwart H.,An Introduction to Infinite-Dimensional Linear Systems Theory[M],New York:Springer-Verlag,1995.
  • 3Lions J.L.,Optimal Control of Systems Governed by Partial Differential Equations[M],New York:Springer-Verlag,1971.
  • 4Bátkai A.and Piazzera S.,Semigroups and linear differential equations with delay[J],J.Math.Anal.Appl.,2001,264:1-20.
  • 5Hale J.K.,Theory of Functional Differential Equations[M],New York:Springer-Verlag,1977.
  • 6Nakagiri S.,Structural properties of functional differential equations in Banach spaces[J],Osaka J.Math.,1988,25:353-398.
  • 7Nakagiri S.and Yamamoto M.,Feedback stabilization of linear retarded systems in Banach spaces[J],J.Math.Anal.Appl.,2001,262:160-178.
  • 8Nakagiri S.and Yamamoto M.,Controllability and observability of linear retarded systems in Banach spaces[J],Int.J.Control,1989,49:1489-1504.
  • 9Nakagiri S.,Optimal control of linear retarded systems in Banach spaces[J],J.Math.Anal.Appl.,1986,120:169-210.
  • 10Bátkai A.and Piazzera S.,A semigroup method for delay equations with relatively bounded operators in the delay term[J],Semigroup Forum,2002,64:71-89.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部