期刊文献+

基于网络用户情感分析的预测方法研究 被引量:32

Research on Predicting Methods Based on Network User Sentiment Analysis
下载PDF
导出
摘要 网络用户情感分析领域的研究为特定领域社会行为的预测提供了新的方法和工具。本文分析了基于情感分析进行预测的逻辑基础、典型预测方法、关键技术以及当前存在的问题和发展趋势。研究发现:研究基于网络用户情感分析预测社会活动趋势的方法在政治、财经等多个领域具备应用条件;典型预测方法可归纳为以情感分析结果作为辅助依据的预测方法和以情感分析结果作为主要依据的预测方法;预测过程涉及情感分析源的选择、预测时间提前量的确定以及情感词统计处理三个关键环节;当前研究还存在网络用户情感的代表性,待分析语料的全面和正确获取,以及网络用户情感的正确分析和统计等问题,有待深入研究。 The research on field of network user sentiment analysis provides new methods and tools for predicting social ac- tivities in special domain. The paper analyses the logical basis, typical methods, key technologies, problems and development tendency of predicting methods based on sentiment analysis. The paper concludes that the predicting methods can be used in many domains, such as palitics and finance; the typical methods include predicting methods that take sentiment analysis as aux- iliary mad predicting methods that take sentiment analysis as primary; the predicting process involves three key points which are the choice of sentiment analysis resources, the determination of lead time and the compute of sentiment words; current researches also have some problems that need to be researched further, which include the representativeness of network users sentiment, the comprehensive and correct acquisition of corpus, and the correct analysis and statistics of network users sentiment. 2 figs. 47 refs.
作者 徐健
出处 《中国图书馆学报》 CSSCI 北大核心 2013年第3期96-107,共12页 Journal of Library Science in China
基金 国家社会科学基金项目资助课题"用户评论情感分析及其在竞争情报服务中的应用研究"(项目编号:11CTQ022)的研究成果之一
关键词 社会化媒体 网络用户 情感分析 预测方法 Social media. Network user. Sentiment analysis. Predicting method.
  • 相关文献

参考文献46

  • 1赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848. 被引量:543
  • 2张紫琼,叶强,李一军.互联网商品评论情感分析研究综述[J].管理科学学报,2010,13(6):84-96. 被引量:154
  • 3Abbasi A, Chela H, Salem A. Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums[ J ]. ACM Transactions on Information Systems, 2008, 26(3 ) : 1 -35.
  • 4Liu H, Lieberman H, Selker T. A model of textual affect sensing using real-world knowledge[C]//Proceedings of the 2003 Intematianal Conference on Intelligent User Interfaces, 2003: 125-132.
  • 5Hu M, Liu B. Mining opinion features in customer reviews[C]//Proceedings of 19th National Conference on Artificial Intellgience, 2004:755-760.
  • 6Pang B, Lee L. Opinion mining and sentiment analysis [ J ]. Foundations and Trends in Information Retrieval, 2008, 2 (1 -2): 1-135.
  • 7Wilson T,Wiebe J, Hoffmann P. Recognizing contextual polarity in phrase-level sentiment analysis[ C] //Proceedings of Human Language Technologies Conference, 2005: 34- 35.
  • 8Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market[J]. Jotumal of Computational Science, 2011,2( 1 ) : 1-8.
  • 9Thelwall M, Buckley K, Paltoglou Georgios, et al. Sentiment strength detection in short informal text[J]. Journal of the American Society for Information Science and Technology, 2010, 61(12) : 2544 -2558.
  • 10Chaovalit P, Zhou L. Movie review mining: A comparison between supervised and unsupervised classification approaches [ C ]//Proceedings of the 38th Hawaii International Conference on System Sciences, 2005:1-9.

二级参考文献77

共引文献1028

同被引文献439

引证文献32

二级引证文献268

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部