期刊文献+

基于特性和影响因素分析的短时交通流预测 被引量:3

Short-term Traffic Flow Forecasting Based on Analysis of Characteristics and Impact Factors
下载PDF
导出
摘要 可靠的短时交通流预测是智能交通系统的重要基础。为了提高短时交通流预测的预测精度和对于不同交通状态的适应性,在分析了交通流特性以及时空二维影响因素的基础上,提出了一种组合预测模型,使其能够综合反映这些特性和影响因素。该组合预测模型包括时间序列模块、空间相关模块和组合预测模块三个子模块。单项预测模型包括自适应单指数平滑模型和RBF神经网络模型,组合系数是以两个单项预测子模块的平滑百分比相对误差作为输入,以神经网络作为学习算法自适应地得到。最后通过平峰和高峰时段实测的交通流量数据来验证模型的有效性和可靠性,结果表明:该组合预测模型的预测精度高于单项预测模型各自单独使用时的精度,且对于不同的交通流状况具有较好的适应性。 Reliable short-term traffic flow forecasting is an important foundation for the intelligent transportation system. In order to improve the accuracy of the short-term traffic flow forecasting and increase its adaptability in different traffic states,a combination forecasting model based on the analysis of traffic flow characteristics and space-time two-dimensional impact factors is presented to reflect the characteris- tics and influencing factors. The model has three sub-models.time-series model,space-related model and combination forecasting model. The single forecast models includes single adaptive exponential smooth- ing model and RBF neural network model. The combination coefficient is obtained adaptively based on the smoothing percentage relative error of the two single forecast sub-modules as input by using the neu- ral network as a learning algorithm. Finally,the traffic flow data are measured respectively in flat peak and peak hours to verify the validity and reliability of the model. The results show that the combination model can produce more precise forecasting than that of two individual models and adapt to different traffic states better.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2013年第1期1-5,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(51268017 61263024)
关键词 智能交通系统 交通流预测 指数平滑法 RBF神经网络 intelligent transport system traffic flow prediction exponent smoothness method RBF neural network
  • 相关文献

参考文献7

二级参考文献22

  • 1刘慕仁,薛郁,孔令江.城市道路交通问题与交通流模型[J].力学与实践,2005,27(1):1-6. 被引量:28
  • 2吴可非,邝华,孔令江,刘慕仁.元胞自动机FI和NS交通流混合模型的研究[J].广西师范大学学报(自然科学版),2005,23(4):8-12. 被引量:13
  • 3周小鹏,冯奇,孙立军.基于最近邻法的短时交通流预测[J].同济大学学报(自然科学版),2006,34(11):1494-1498. 被引量:22
  • 4何云,陈若航,吕晓阳.一维DCA交通流模型分析[J].广西师范大学学报(自然科学版),1997,15(1):49-53. 被引量:11
  • 5Sherif Ishak, Haitham AI.Deek. Performance evaluation of short-term time-series traffic prediction model[J]. Journal of Transportation Engineering, 2002, 128(6) :490 - 498.
  • 6Chrobok R, Kaumann O, Wahle J, Schreekenberg M. Different methods of traffic forecast based on real date[ J].European Journal of Operational Reserch, 2004, 155(3) : 558 - 568.
  • 7Sangsoo Lee, Daniel B Fambro. Application of the subset ARIMA model for short-term freeway traffic volume forecasting[J]. Transportation Research Record 1678, 1999: 179- 188.
  • 8Lingras Pawan, Sharma Satish C, Osborne Phil, et al. Traffic volume time-series analysis according to the type of road use[J]. Computer-Aided Civil and Infrastructure Engineering, 2000, 15(5) :365 - 373.
  • 9Anthony Stathopoulos, Matthew G, karlaftis. A multivariate state space approach for urban traffic flow modeling and prediction[J] . Transportation Research PartC,2003 : 121 - 135.
  • 10Jeffrey L, Elman. Finding structure in time[J]. Cognitive Science, 1990,14 : 179 - 211.

共引文献149

同被引文献35

  • 1尚宁,覃明贵,王亚琴,崔中发,崔岩,朱扬勇.基于BP神经网络的路口短时交通流量预测方法[J].计算机应用与软件,2006,23(2):32-33. 被引量:31
  • 2卢守峰,杨兆升,刘喜敏.基于复杂性理论的城市交通系统研究[J].吉林大学学报(工学版),2006,36(B03):153-156. 被引量:12
  • 3吕慎,田锋,李旭宏.大城市客运交通结构优化模型研究[J].公路交通科技,2007,24(7):117-120. 被引量:24
  • 4STOKENBERGA A,SCHIPPER L. Trends in transport activity, energy use, and carbon footprint in mexico City[J]. Journal of the Transportation Research Board,2012,2287(13) ..105-112.
  • 5HILLSMAN L E, CEVALLOS F, SANDO T. Carbon footprints for public transportation agencies in Florida transportation research record[J].Journal of the Transportation Research Board, 2012,2287(10):80-88.
  • 6RAHMAN F,MANNING K,COWDY J. Let Eco Drive be your guide:Development of a mobile tool to reduce carbon footprint and promote green transport[C]// Proceedings of the 27th Annual ACM Symposium on Applied Computing. New York.. ACM Press, 2012:519-524.
  • 7IPCC. Climate change 2007: Synthesis report [M]//Contribution of Working Groups i, ii and iii to the fourth assessment report of the intergovernmental panel on climate change. Geneva: IPCC,2007.
  • 8孙正春.基于低碳成本计算的城市交通结构优化研究[D].成都:西南交通大学,2009.
  • 9MESSERLI B,GROSJEAN M,HOFER T,et al. From nature-dominated to human-dominated environmental changes [J]. Quaternary Science Reviews, 2000,19 (1/2/3/4/5) : 459-479.
  • 10胡莹菲,王润,余运俊.厦门城市交通系统碳足迹评估研究[J].上海环境科学,2010,29(3):98-101. 被引量:12

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部