摘要
无前像位形(GOE)是元胞自动机的一个重要特征,它的存在关系到元胞自动机的可逆性。本文主要利用矩阵代数的原理,针对一类二元域上的特殊混合规则的线性二维元胞自动机进行讨论,给出了在不同的情况下,一个位形是GOE的充分必要条件,以及计算元胞自动机中GOE的个数的算法。
Garden of Eden (GOE) configuration is an important characteristic in cellular automata (CA) theory. Its existence relates to the reversibility of a CA. This article deals with a particular hybrid linear two-dimensional (2-D) CA in GF(2) (the Galois field with two elements) by using matrix algebra. Several necessary and sufficient conditions are provided,which guarantee a given configuration of being a GOE in different cases. Besides,the algorithm is proposed to obtain the number of GOEs in such a CA with the particular hybrid rule mentioned above.
出处
《广西师范大学学报(自然科学版)》
CAS
北大核心
2013年第1期37-43,共7页
Journal of Guangxi Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11161005)
广西自然科学基金资助项目(0832103
2010GXNSFA013118)
广西教育厅科研项目资助项目(201106LX074)
关键词
元胞自动机
GOE
混合元胞自动机
矩阵代数
cellular automata
Garden of Eden
hybrid cellular automata
matrix algebra