期刊文献+

单组元推力器毛细管两相流影响分析 被引量:1

Study of Two-phase Flow in Injector Tube of Monopropellant Thruster
下载PDF
导出
摘要 单组元推力器在工作过程中产生的高温向毛细管处传递,使毛细管内产生气液两相流动。随着推进剂流量的减小,气相组分将不断增加,并会产生明显的气阻。文章就气阻对推力器的影响进行了专题研究,采用FLUENT软件,基于体积分数模型和多相流控制方程,对84种条件下毛细管内两相流的分布情况和两相流对推力器毛细管压差的影响情况进行了数值模拟,并通过两种推力器热试车开展了毛细管内两相流对推力器燃压影响的专项试验。数值模拟结果和试验结果表明,在毛细管内径足够小时,毛细管内的两相流引起的气阻均会导致毛细管内部压降的突然变化,从而引起推力器燃压阶跃,燃压逐渐降低,并进一步影响推力,使推力逐渐下降。 During the application of satellite propulsion systems, the high temperature raised in the process of monopropellant thruster is transferred to the injector tube, leading to the two-phase flow phenomenon. As the massflow of propellant decreases, the pneumatic resistance will increase accordingly. By using the FLUENT software, the influence of pneumatic resistance on the thruster performance was studied. Based on the proportion fraction model and government equations of multiphase flow, the flow and pressure distribution in the injector tube under 84 operating conditions were presented. Furthermore, special tests on multiphase flow-combustion pressure relationship were also performed. Experimental and numerical results show that the pneumatic resistance can result in the sudden variety of pressure drop when the inner diameter of injector tube is small enough, and which cause the decreased thrust ultimately.
作者 陈君 王梦
出处 《中国空间科学技术》 EI CSCD 北大核心 2013年第2期47-53,60,共8页 Chinese Space Science and Technology
关键词 单组元推力器 毛细管 气阻 两相流 航天器 Monopropellant thruster Injector tube Pneumatic resistance Two-phase flow Spacecraft
  • 相关文献

参考文献8

  • 1HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39: 201-225.
  • 2TAI WEN HSU, CHIH MIN HSIEH, ROBERT HWANG. Using RANS to simulate vortex generation and dissipation around impermeable submerged double breakwaters[J]. Coastal Engineering, 2004, 51(7): 557-579.
  • 3APTE S V, GOROKHOVSKI M, MOIN P. LES of atomizing spray with stochastic modeling of secondary breakup [J]. International Journal of Multiphase Flow, 2003, 29(9): 1503-1522.
  • 4GUEYFFIER D, LI J, NADIM A. Volume-of-fluid interface tracking with smoothed surface methods for three-dimensional flows [J]. Journal of Computational Physics, 1999, 152: 423-456.
  • 5KONNOV A A, RUYCK J DE. Kinetic modeling of the decomposition and flames of hydrazine [J]. Combustion and Flame, 2001, 124(1-2): 106-126.
  • 6GONCALVES ERIC, FORTES PATELLA REGIANE. Numerical simulation of cavitating flows with homogeneous models[J]. Computers & Fluids, 2009, 38(9): 1682-1696.
  • 7CHEN Y S, KIM S W. Computation of turbulent flows Using an Extended kepsilon Turbulence Closure Model [R]. National Aeronautics and Space Adiministration, National Technical Information Service, 1987.
  • 8DENG BAOQING, WU WENQUAN, XI SHITONG. A near-wall two-equation heat transfer model for wall turbulent flows[J]. International Journal of Heat and Mass Transfer, 2001, 44(4): 691-698.

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部