期刊文献+

轮爪式探测车Rabbit的运动性能分析

Motion performance analysis of Rabbit rover with retractable-claw wheels
下载PDF
导出
摘要 为了提高机器人的越障能力,设计了一种新型探测车Rabbit,该车装有4个轮爪式车轮.介绍了轮爪式车轮的原理,以及Rabbit样机移动系统和控制系统的设计,并通过实验对其进行了运动性能分析.结果表明:Rabbit可以在各种地形中自如运动,如台阶路面、斜坡路面、多障碍路面和月球模拟土壤中等.Rabbit还可以越过高度为车轮半径1.4倍的台阶,并能越过斜度为40°的斜坡,性能优于普通圆形车轮.该轮爪式探测车适用于行星探测或野外探测. To improve the climbing obstacles capability of a robot, a rover prototype named as Rabbit whose motion is based on 4 retractable-claw wheels was designed. Principle of the wheel, mobile system and control system of Rabbit were presented respectively, and some experiments were finished to test its perform- ance. The experimental results show that the Rabbit rover can move freely in various terrain conditions, such as step, slope, multiple-obstacle, and simulated lunar soil, etc. Experiment results demonstrate that the re- tractable-claw wheels enable the rover to traverse over steps whose height is 1.4 times of the wheel radius, o- ver sloped terrains up to 40° tilt angle, which is much larger than conventional robots can do. The rover with retractable-claw wheels is proved to be suitable for planetary or field exploration.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第3期401-405,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 111计划资助项目 LIA资助项目
关键词 轮爪 探测车 机器人 越障 retractable-claw rover robot climbing obstacles
  • 相关文献

参考文献19

  • 1李翠兰,马培荪,高雪官,曹志奎.一种新型的可被动适应崎岖表面的六轮月球漫游车[J].传动技术,2005,19(1):9-13. 被引量:14
  • 2Salerno A,Ostrovskaya S, Angeles J. The development of quasi- holonomic wheeled robots [ C ]// 2002 IEEE International Con- ference on Robotics and Automation. Washington, USA: IEEE, 2002:3514-3520.
  • 3Bickler D. Roving over Mars[ EB/OL]. Mechanical engineering. http://www, memagazine, org/backissues/membersonly/april98/ features/mars/mars, html, 1998.
  • 4Eisen H. Mechanical design of the mars pathfinder mission [ C ]// Kaldeich-Schllrmann B H. Proceedings of the Conference on 7th European Space Mechanisms and Tribology Symposium. ESTEC, Noordwijk, the Netherlands: European Space Agency, 1997:293-301.
  • 5Schenker P S, Huntsberger T L, Pirjanian P, et al. Planetary rover developments supporting mars exploration, sample return and fu- ture human-robotic colonization [ J ]. Autonomous Robots, 2003, 14(2-3) :103-126.
  • 6Lindemann R A,Bickler D B, Harrington B, et al. Mars explora- tion rover mobility development [ J ]. Robotics & Automation Magazine, IEEE,2006,13 ( 2 ) : 19- 26.
  • 7Kubota T, Kuroda Y, Yasuharu K, et al. Small, light-weight rover "Micro5" for lunar exploration [ J ]. Acta Astronautica, 2003, 52(2-6) :434-439.
  • 8刘方湖,陈建平,马培荪,曹志奎.行星探测机器人的研究现状和发展趋势[J].机器人,2002,24(3):268-275. 被引量:36
  • 9Boxerbaum A S, Oro J, Peterson G, et al. The latest generation whegs robot features a passive-compliant body joint[ C ]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France : IEEE ,2008 : 1636-1641.
  • 10Saranli U, Buehler M, Koditschek D E. RHex: a simple and highly mobile hexapod robot [ J ]. The International Journal of Robotics Research,2001,20(7) :616-631.

二级参考文献33

共引文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部