期刊文献+

冷却剂参数对铣槽喷管低周疲劳寿命的影响 被引量:2

Effects of Coolant Parameters on Low Cycle Fatigue Life of Milled Channel Nozzle
下载PDF
导出
摘要 采用有限体积流固耦合计算方法、非线性有限元热结构耦合分析方法和局部应变法研究大面积比铣槽喷管三维再生冷却槽道在循环工作条件下的热结构变形与低周疲劳寿命,并对比分析了冷却剂质量流量与入口温度对铣槽喷管疲劳使用寿命的影响。计算结果表明,铣槽喷管热结构响应呈现复杂的三维效应,应变较大位置主要分布在与肋连接的内衬区域,喷管中部的残余应变量最大;冷却槽道低周疲劳寿命分布和热结构响应基本一致,最小寿命位于喷管中部与肋相连的内衬区域燃气侧;随冷却剂质量流量增加,铣槽喷管低周疲劳寿命不断提高;随冷却剂入口温度增加喷管尾部低周疲劳寿命值不断降低,而喷管中前部的低周疲劳寿命值却不断提高,当冷却剂入口温度为280K左右时,本文的铣槽喷管总体使用寿命达到最大。 The finite volume fluid-solid coupling calculation method, nonlinear finite element thermal- structural coupling analysis method and local strain method were adopted to investigate the thermal-structural deformation and low cycle fatigue life of three-dimensional regenerative cooling channel for milled channel nozzle with high area ratio under cyclic working loads, and parametric studies were carried out to estimate the effects of coolant mass flow and inlet temperature on the nozzle fatigue service life. Numerical simulation results show that the thermal-structural response of milled channel nozzle appears the complex three-dimen- sional effect, with the biggish strain mainly distributed in the liner region connected with rib, and the maxi- mum residual strain lying in the middle of the nozzle, which is consistent with the low cycle fatigue life dis- tribution. Hence, the minimum service life occurs at the liner gas side joining with rib in the nozzle middle. While the coolant mass flow increases, the low cycle fatigue life of milled channel nozzle enhances continuously. However, with the rise of coolant inlet temperature the fatigue life of the nozzle afterbody decreases gradually, but yet the fatigue life in the middle and front of the nozzle grows up persistently. To be specific, the optimal general service life of milled channel nozzle in this work occurs at coolant inlet temperature approximately 280K.
出处 《推进技术》 EI CAS CSCD 北大核心 2013年第4期537-544,共8页 Journal of Propulsion Technology
关键词 喷管 再生冷却 低周疲劳寿命 非线性有限元 热结构耦合 Nozzle Regenerative cooling Low cycle fatigue life Nonlinear finite element Thermalstructural coupling
  • 相关文献

参考文献14

  • 1Komar D R, Christenson R L. Reusable Launch Vehicle Engine Systems Operations Analysis[ R]. AIAA 96-4246.
  • 2Marsik S J,Gawrylowicz H T. Structural Integrity and Du- rability for Space Shuttle Main Engine and Future Reus- able Space Propulsion Systems[ R]. AIAA 86-1513.
  • 3Jeffry F, Fritz K,Frank S. Development of Channel Wall Nozzles for Use on Liquid Propellant Rocket Engine[ R]. AIAA 2005-4306.
  • 4杨进慧,陈涛,金平,蔡国飙.液体火箭发动机再生冷却槽寿命预估[J].航空动力学报,2012,27(4):907-912. 被引量:7
  • 5In-Kyung S, William A. A Subscale-Based Rocket Com- bustor Life Prediction Methodology [ R ]. AIAA 2005- 3570.
  • 6Jorg R R, Oskar J H,Evgeny B Z. Influence of Time De- pendent Effects on the Estimated Life Time of Liquid Rocket Combustion Chamber Walls [ R ]. AIAA 2004- 3670.
  • 7Winterfeldt L,Stenstrom E. Functional Aspects on Laser Welded Sandwich Walls for Rocket Engine Nozzles [ R ]. AIAA 2001-3695.
  • 8Boman A,Haggander J. Laser Welded Channel Wall Noz- zle Design, Manufacturing and Hot Gas Testing [ R ]. AIAA 99-2750.
  • 9Vinod K A, Steven M A. Viscoplastie Analysis of an Ex- perimental Cylindrical Thrust Chamber Liner [ J ]. AIAA Journal, 1992, 30(3): 781-789.
  • 10Weiss J M,Smith W A. Preconditioning Applied to Varia- ble and Constant Density Flows[ J]. AIAA Journal, 1995, 33(11) : 2050-2057.

二级参考文献29

  • 1李茂德,殷亮,乐伟,林泉.半导体制冷系统电极非稳态温度场的数值分析[J].同济大学学报(自然科学版),2004,32(6):767-770. 被引量:14
  • 2王小群,杜善义.热电制冷技术在航空航天领域的应用[J].中国航天,2006(10):22-24. 被引量:20
  • 3栾叶君,孙纪国,田昌义,尘军.氢氧推力室再生冷却内壁故障分析[J].火箭推进,2006,32(5):17-21. 被引量:11
  • 4徐德胜,刘贻贻苓,何颂文.半导体制冷与应用技术[M].上海:上海交通大学出版社.1998.1-7.
  • 5Francis J,DiSalvo. Thermoelectric cooling and power generation [J]. Science, 1999,285(7) : 703-706.
  • 6L Y Huang,JC Lin, K D She, et al. Development of low-cost micro-thermoelectric coolers utilizing MEMStechnology[J]. Sensors and Actuators: A Physical, 2008,148(1) : 176-185.
  • 7Z M Deng,X L Cheng,X Q Wang. Analysis and De- sign for the Thermo-Smart Structure of Composite with TEC [-A]. International Conference on Smart Materials and Nanotechnology in Engineering [C]. 2007,642336.
  • 8R Chein,G Huang. Thermoelectric cooler application in electronic cooling [J]. Applied Thermal Engi- neering ,2004,24(14-15) :2207-2217.
  • 9J L Cui, H Fu,X L Liu,et al. Thermoelectric proper- ties in p-type nanostructured Ge-doped Sbloo GeTelso alloy [J]. Current Ap plied Physics, 2009,9 (5) .. 1170- 1174.
  • 10Y S Hor,R J Cava. Thermoelectric properties of Sn- doped Bi-Sb[J]. Journal of Alloys and Compounds,2009,479(1-2):368-371.

共引文献10

同被引文献29

  • 1Di LIU,Bing SUN,Taiping WANG,Jiawen SONG,Jianwei ZHANG.Thermo-structural analysis of regenerative cooling thrust chamber cylinder segment based on experimental data[J].Chinese Journal of Aeronautics,2020,33(1):102-115. 被引量:2
  • 2程玉强,魏鹏飞,吴建军.基于模糊推理的液体火箭发动机推力室减损控制研究[J].火箭推进,2005,31(3):9-13. 被引量:1
  • 3栾叶君,孙纪国,田昌义,尘军.氢氧推力室再生冷却内壁故障分析[J].火箭推进,2006,32(5):17-21. 被引量:11
  • 4Quentmeyer R. Experimental Fatigue Life Investigation of Cylindrical Thrust Chambers[ R] . AIAA 77-893.
  • 5Cook R, Quentmeyer R. Advanced Cooling Techniques for High-Pressure, Hydrocarbon-Fueled Rocket En- gines[Rl. AIAA 80-1266.
  • 6Sung I, Anderson W. A Subscale-Based Rocket Combus- tor Life Prediction Methodology[R]. AIAA 2005-3570.
  • 7Riccius J R, Zametaev E B, Haidn O J. LRE Chamber Wall Optimization Using Plane Strain and Generalized Plane Strain Models[ R]. A1AA 2006-4366.
  • 8YANG Jin-Hui, Chen Tao, Jin Ping, et al. Influence of the Startup and Shutdown Phases on the Viscoplastic Structural Analysis of the Thrust Chamber Wall [J]. Aerospace Science and Technology, 2014, 34: 84-91.
  • 9Popp M, Schmidt G. Rocket Engine Combustion Cham- ber Design Concepts for Enhanced Life [R]. AIAA 96- 3303.
  • 10Riccius J R, Zametaev E B, Haidn O J. Comparison of 2D and 3D Structural FE-Analyses of LRE Combustion Chamber Walls[ RI. AIAA 2006-4365.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部